Sources and Long-Term Trends of Ozone Precursors to Asian Pollution

Part of the ISSI Scientific Report Series book series (ISSI, volume 16)


Due to its fast economic development, China’s emissions are in the spotlight of efforts to mitigate climate change and improve regional and city-scale air quality. Despite growing efforts to better quantify China’s emissions, the current estimates are often poor or inadequate. Bottom-up inventories are generally based on sectoral statistical information and therefore rely strongly on the accuracy of the input data. Complementary to bottom-up methodologies, inverse modeling of fluxes has the potential to improve those estimates through the use of atmospheric observations of trace gas compounds. Here we present comparisons of key pollutant emissions from different bottom-up inventories, and perform 20-year model simulations of the atmospheric composition over China using either the EDGARv4.2 or the MACCity bottom-up emission databases. The skill of the model to capture the observed variability and trends is assessed through comparisons with satellite NO2 observations retrieved from GOME, SCIAMACHY and OMI sensors through 1997–2008 and HCHO columns observed by OMI over 2005–2010. Next, we use a decade (2005–2014) of OMI HCHO columns to constrain the VOC emissions over China in a flux inversion framework built on the IMAGESv2 chemistry-transport model, and adjust the emissions of VOC precursors of HCHO in the model in order to reduce the discrepancy between the model predictions and the HCHO observations. The interannual and seasonal variability of the resulting top-down VOC fluxes (anthropogenic, pyrogenic and biogenic) is presented and confronted to past studies.


Top-down Chinese emissions Inverse modeling Ozone trends Satellite formaldehyde columns 


  1. Arneth, A., Niinemets, Ü., Pressley, S., et al. (2007). Process-based estimates of terrestrial ecosystem isoprene emissions: Incorporating the effects of a direct CO2-isoprene interaction. Atmospheric Chemistry and Physics, 7(1), 31–53.CrossRefGoogle Scholar
  2. Bates, K. H., Nguyen, T. B., Teng, A. P., Crounse, J. D., Kjaergaard, H. G., Stoltz, B. M., Seinfeld, J. H., & Wennberg, P. O. (2016). Production and fate of C4 dihydroxycarbonyl compounds from isoprene oxidation. The Journal of Physical Chemistry. A, 120(1), 106–117.CrossRefGoogle Scholar
  3. Bauwens, M., Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Wiedinmyer, C., Kaiser, J. W., Sindelarova, K., & Guenther, A. (2016). Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmospheric Chemistry and Physics, 16, 10133–10158.CrossRefGoogle Scholar
  4. Bo, Y., Cai, H., & Xie, S. D. (2008). Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmospheric Chemistry and Physics, 8, 7297–7316.CrossRefGoogle Scholar
  5. Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research, 109, D04311. doi: 10.1029/2003JD003962.CrossRefGoogle Scholar
  6. Boersma, K. F., et al. (2011). An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 4, 1905–1928.CrossRefGoogle Scholar
  7. Chan, K. L., Hartl, A., Lam, Y. F., Xie, P. H., Liu, W. Q., Cheung, H. M., Lampl, J., Pöhler, D., Li, A., Xu, J., Zhou, H. J., Ning, Z., & Wenig, M. O. (2015). Observations of tropospheric NO2 using ground based MAX-DOAS and OMI measurements during the Shanghai World Expo 2010. Atmospheric Environment, 119, 45–58.CrossRefGoogle Scholar
  8. De Smedt, I., Müller, J.-F., Stavrakou, T., van der A, R. J., Eskes, H., & Van Roozendael, M. (2008). Twelve years of global observation of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 8, 4947–4963.CrossRefGoogle Scholar
  9. De Smedt, I., Stavrakou, T., Hendrick, F., et al. (2015). Diurnal, seasonal, and long-term variation of global formaldehyde columns inferred from combined OMI and GOME-2 observations. Atmospheric Chemistry and Physics, 15, 12519–12545.CrossRefGoogle Scholar
  10. Dee, D. P., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.CrossRefGoogle Scholar
  11. Ding, J., van der A, R. J., Mijling, B., Levelt, P. F., & Hao, N. (2015). NOx emission estimates during the 2014 Youth Olympic Games in Nanjing. Atmospheric Chemistry and Physics, 15, 9399–9412.CrossRefGoogle Scholar
  12. EC-JRC/PBL European Commission. (2011). Joint Research Center/Netherlands Environmental Assessment Agency. Emission Database for Global Atmospheric Research version 4.2. Accessed 20 Sept 2016.
  13. Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X. (2010). MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets 2001–2012, Collection 5.1 IGBP Land Cover. Boston: University.Google Scholar
  14. Giglio, L., Randerson, J. T., & Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research, 118(1), 317–328.Google Scholar
  15. Granier, C., Bessagnet, B., Bond, T., D’Angiola, A., Denier van der Gon, H., Frost, G. J., et al. (2011). Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109, 163–190.CrossRefGoogle Scholar
  16. Guan, D., Liu, Z., Geng, Y., Lindner, S., & Hubacek, K. (2012). The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 2, 672–675.CrossRefGoogle Scholar
  17. Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471–1492.CrossRefGoogle Scholar
  18. Guenther, A. B., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181–3210.CrossRefGoogle Scholar
  19. Huang, X., Li, M., Li, J., & Song, Y. (2012). A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment, 50, 9–15.CrossRefGoogle Scholar
  20. Huang, K., Zhuang, G., Lin, Y., Wang, Q., Fu, J. S., Fu, Q., Liu, T., & Deng, C. (2013). How to improve the air quality over megacities in China: Pollution characterization and source analysis in Shanghai before, during, and after the 2010 World Expo. Atmospheric Chemistry and Physics, 13, 5927–5942.CrossRefGoogle Scholar
  21. Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., et al. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117–161.CrossRefGoogle Scholar
  22. Kaiser, J., Heil, A., Andreae, M., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M., Suttie, M., et al. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554.CrossRefGoogle Scholar
  23. Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Greet, J.-M., Fukui, T., Kawashima, K., et al. (2013). Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics, 13, 11019–11058.CrossRefGoogle Scholar
  24. Lamarque, J.-F., et al. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10, 7017–7039.CrossRefGoogle Scholar
  25. Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van Den Oord, G. H. J., Bhartia, P. K., Tamminen, J., De Haan, J. F., & Veefkind, P. (2006). Science objectives of the ozone monitoring instrument. Geoscience and Remote Sensing, 44, 1199–1208.CrossRefGoogle Scholar
  26. Li, T. Y., Deng, X. J., Fan, S. J., Wu, D., Li, F., Deng, T., Tan, H. B., & Jiang, D. H. (2012). Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games. Huan Jing Ke Xue, 33(9), 2932–2938.Google Scholar
  27. Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., & Zhang, Y. (2014). Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmospheric Chemistry and Physics, 14, 5617–5638.CrossRefGoogle Scholar
  28. Mijling, B., & van Der A, R. J. (2012). Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale. Journal of Geophysical Research. doi: 10.1029/2012JD017817.
  29. Mijling, B., van Der A, R. J., Boersma, K. F., Van Roozendael, M., De Smedt, I., & Kelder, H. M. (2009). Reductions of NO2 detected from space during the 2008 Beijing Olympic Games. Geophysical Research Letters. doi: 10.1029/2009GL038943.
  30. Müller, J.-F., & Stavrakou, T. (2005). Inversion of CO and NOx emissions using the adjoint of the IMAGES model. Atmospheric Chemistry and Physics, 5, 1157–1186.CrossRefGoogle Scholar
  31. Müller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Rinne, J., Munger, B., Goldstein, A., & Guenther, A. (2008). Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environmental model. Atmospheric Chemistry and Physics, 8, 1329–1341.Google Scholar
  32. Peeters, J., Müller, J.-F., Stavrakou, T., & Nguyen, S. V. (2014). Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: The upgraded LIM1 mechanism. The Journal of Physical Chemistry A, 118, 8625–8643.CrossRefGoogle Scholar
  33. Ramankutty, N., & Foley, J. A. (1999). Estimating historical changes in global land cover. croplands from 1700 to 1992. Global Biogeochem. Cy., 13, 997–1027.CrossRefGoogle Scholar
  34. Randerson, J., Chen, Y., van der Werf, G. R., Rogers, B., & Morton, D. (2012). Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research. doi: 10.1029/2012JG002128.
  35. Riahi, K., Rao, S., Krey, V., et al. (2011). RCP8.5 – a scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 33. doi: 10.1007/s10584-011-0149-y.CrossRefGoogle Scholar
  36. Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., Held, A. C., Pereira, J. M. C., & van het Bolscher, M. (2008). Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22, GB2002. doi: 10.1029/2007GB003031.CrossRefGoogle Scholar
  37. Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., et al. (2014). Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14, 9317–9341.CrossRefGoogle Scholar
  38. Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L., & Guenther, A. (2009). Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmospheric Chemistry and Physics, 9, 3663–3679.Google Scholar
  39. Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L., & Guenther, A. (2009a). Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns. Atmospheric Chemistry and Physics, 9, 1037–1060.CrossRefGoogle Scholar
  40. Stavrakou, T., Peeters, J., & Müller, J.-F. (2010). Improved global modelling of HOx recycling in isoprene oxidation: Evaluation against the GABRIEL and INTEX-A aircraft campaign measurements. Atmospheric Chemistry and Physics, 10, 9863–9878.CrossRefGoogle Scholar
  41. Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P. F., et al. (2011). First space-based derivation of the global atmospheric methanol emission fluxes. Atmospheric Chemistry and Physics, 11, 4873–4898.CrossRefGoogle Scholar
  42. Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Wild, M., & Xia, X. (2014). Isoprene emissions over Asia 1979–2012: Impact of climate and land use changes. Atmospheric Chemistry and Physics, 14, 4587–4605.CrossRefGoogle Scholar
  43. Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., et al. (2015). How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmospheric Chemistry and Physics, 15, 12007–12067.CrossRefGoogle Scholar
  44. Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Lerot, C., Van Roozendael, M., Coheur, P. F., Clerbaux, C., et al. (2016). Substantial underestimation of post-harvest burning emissions in the North China Plain revealed by multi-species space observations. Scientific Reports, 6, 32307. doi: 10.1038/srep323072016.CrossRefGoogle Scholar
  45. United Nations, Department of Economic and Social Affairs, Population Division, World Urbanization Prospects. (2014). The 2014 revision, highlights (ST/ESA/SER.A/352). Accessed 20 Sept 2016.
  46. van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., & Arellano Jr., A. F. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6, 3423–3441. doi: 10.5194/acp-6-3423-2006.CrossRefGoogle Scholar
  47. van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735.CrossRefGoogle Scholar
  48. van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., Archibald, S., et al. (2014). Biomass burning fuel consumption rates: A field measurement database. Biogeosciences, 11(24), 7305–7329.CrossRefGoogle Scholar
  49. Wang, Y., Hao, J., McElroy, M. B., William, J., et al. (2009). Ozone air quality during the 2008 Beijing Olympics: Effectiveness of emission restrictions. Atmospheric Chemistry and Physics, 9, 5237–5251.CrossRefGoogle Scholar
  50. Weedon, G. P., Balsano, G., Bellouin, N., Gomes, S., Best, M. J., & Viterbo, P. (2014). The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, 7505–7514.CrossRefGoogle Scholar
  51. Wei, W., Wang, S., Chatani, S., & Klimont, Z. (2008). Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 42, 4976–4988.CrossRefGoogle Scholar
  52. Wiedinmyer, C., Akagi, S., Yokelson, R., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641.CrossRefGoogle Scholar
  53. Worden, H. M., Cheng, Y., Pfister, G., Carmichael, G. R., Zhang, Q., Streets, D. G., et al. (2012). Satellite-based estimates of reduced CO and CO2 emissions due to traffic restrictions during the 2008 Beijing Olympics. Geophysical Research Letters, 39. doi: 10.1029/2012GL052395.
  54. World Development Indicators. (n.d.) Accessed 20 Sept 2016.
  55. Worldometers. (n.d.) Accessed 20 Sept 2016.
  56. Yang, Q., Wang, Y., Zhao, C., Liu, Z., Gustafson, W. I., & Shao, M. (2011). NOx emission reduction and its effects on ozone during the 2008 Olympic Games. Environmental Science & Technology, 45, 6404–6410.CrossRefGoogle Scholar
  57. Yue, X., Unger, N., & Zheng, Y. (2015). Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades. Atmospheric Chemistry and Physics, 15, 11931–11948.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Royal Belgian Institute for Space AeronomyBrusselsBelgium

Personalised recommendations