Anthropogenic Emissions in Asia

  • Claire Granier
  • Thierno Doumbia
  • Louise Granier
  • Katerina Sindelarova
  • Gregory J. Frost
  • Idir Bouarar
  • Catherine Liousse
  • Sabine Darras
  • Jenny Stavrakou
Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 16)

Abstract

Accurate information on surface emissions is critical for understanding the current chemical composition of the atmosphere and for forecast simulations. Many research teams worked during the past years to better quantify emissions in different parts of the world, and to develop inventories of anthropogenic emissions for different periods. An evaluation of the most recent datasets providing emissions for Asia for the 1960–2014 period is discussed in this chapter for different gaseous and particulate compounds, i.e. carbon monoxide, nitrogen oxides, non-methane volatile organic compounds, sulfur dioxide, ammonia, black carbon, organic carbon, and particulate matter PM10 and PM2.5. The comparison between the inventories is used to quantify the range of the emissions for several regions and different periods. Since very little information is available concerning the uncertainties on emissions in the different regions of the world, we use the comparison between the different datasets to provide some information on these uncertainties.

Keywords

Anthropogenic emissions Air pollution in Asia Surface emission inventories 

References

  1. Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sander, R., Schöpp, W., Wagner, F., & Winiwarter, W. (2011). Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software, 26, 1489–1501. doi:10.1016/j.envsoft.2011.07.012.CrossRefGoogle Scholar
  2. Bo, Y., Cai, H., & Xie, S. D. (2008). Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmospheric Chemistry and Physics, 8, 7297–7316. doi:10.5194/acp-8-7297-2008.CrossRefGoogle Scholar
  3. Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., Fernandes, S., & Trautmann, N. (2007). Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochemical Cycles, 21, GB2018. doi:10.1029/2006GB002840.CrossRefGoogle Scholar
  4. Cao, G., Zhang, X., & Zheng, F. (2006). Inventory of black carbon and organic carbon emissions from China. Atmospheric Environment, 40, 6516–6527.CrossRefGoogle Scholar
  5. Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., & Granier, C. (2016). Forty years of improvements in European air quality: Regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16, 3825–3841. doi:10.5194/acp-16-3825-2016.CrossRefGoogle Scholar
  6. Granier, C., Lamarque, J. F., Mieville, A., Muller, J. F., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., & Wallens, S. (2005). POET, a database of surface emissions of ozone precursors. Available at http://www.aero.jussieu.fr/projet/ACCENT/POET.php.
  7. Granier, C., Bessagnet, B., Bond, T., D’Angiola, A., Denier van der Gon, H., Frost, G., Heil, A., Kaiser, J., Kinne, S., Klimont, Z., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Riahi, K., Schultz, M., Smith, S., Thomson, A. M., van Aardenne, J., & van der Werf, G. (2011). Evolution of anthropogenic and biomass burning emissions at global and regional scales during the 1980–2010 period. Climatic Change. doi:10.1007/s10584-011-0154-1.
  8. He, K., Huo, H., & Zhang, Q. (2002). Urban air pollution in China: Current status, characteristics and progress. Annual Review of Energy and the Environment, 27, 397–431. doi:10.1146/annurev.energy.27.122001. 083421.CrossRefGoogle Scholar
  9. Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., & Zhang, H. (2012). A high-resolution ammonia emission inventory in China. Global BiogeochemCycles, 26, GB1030. doi:10.1029/2011GB004161.Google Scholar
  10. Huang, Shen, Y. H., Chen, H., Wang, R., Zhang, Y., Su, S., Chen, Y., Lin, N., Zhuo, S., Zhong, Q., Wang, X., Liu, J., Li, B., Liu, W., & Tao, S. (2014). Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environmental Science & Technology, 48(23), 13834–13843.CrossRefGoogle Scholar
  11. Janssens-Maenhout, G., Pagliari, V., Guizzardi, D., & Muntean, M. (2013). Global emission inventories in the Emission Database for Global Atmospheric Research (EDGAR) – Manual (I): Gridding: EDGAR emissions distribution on global gridmaps, JRC Report, EUR 25785 EN, ISBN 978-92-79-28283-6, doi:10.2788/81454.
  12. Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., & Li, M. (2015). HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 15, 11411–11432. doi:10.5194/acp-15-11411-2015.CrossRefGoogle Scholar
  13. Junker, C., & Liousse, C. (2008). A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmospheric Chemistry and Physics, 8, 1195–1207. doi:10.5194/acp-8-1195-2008.CrossRefGoogle Scholar
  14. Kan, H., Chen R., & Tong S. (2012), Ambient air pollution, climate change, and population health in China, Environment International, 42, 10–19, ISSN 0160-4120, http://dx.doi.org/10.1016/j.envint.2011.03.003.
  15. Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Shao, M., & Zhu, T. (2015). High-resolution ammonia emissions inventories in China from 1980–2012. Atmospheric Chemistry and Physics Discussions, 15, 26959–26995. doi:10.5194/acpd-15-26959-2015.CrossRefGoogle Scholar
  16. Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., & Akimoto, H. (2013). Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics, 13, 11019–11058. doi:10.5194/acp-13-11019-2013.CrossRefGoogle Scholar
  17. Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., & van Vuuren, D. P. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10, 7017–7039. doi:10.5194/acp-10-7017-2010.CrossRefGoogle Scholar
  18. Lei, Y., Zhang, Q., He, K. B., & Streets, D. G. (2011). Primary anthropogenic aerosol emission trends for China, 1990–2005. Atmospheric Chemistry and Physics, 11, 931–954. doi:10.5194/acp-11-931-2011.CrossRefGoogle Scholar
  19. Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K. B., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y. F., Hong, C. P., Huo, H., Jiang, X. J., Kang, S. C., Liu, F., Su, H., & Zheng, B. (2015). MIX: A mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects. Atmospheric Chemistry and Physics Discussions, 15, 34813–34869. doi:10.5194/acpd-15-34813-2015.CrossRefGoogle Scholar
  20. Lu, Z., Zhang, Q., & Streets, D. G. (2011). Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics, 11, 9839–9864. doi:10.5194/acp-11-9839-2011.CrossRefGoogle Scholar
  21. Mijling, B., van der, A. R. J., & Zhang, Q. (2013). Regional nitrogen oxides emission trends in East Asia observed from space. Atmospheric Chemistry and Physics, 13, 12003–12012. doi:10.5194/acp-13-12003-2013.CrossRefGoogle Scholar
  22. Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., & Hayasaka, T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7, 4419–4444. doi:10.5194/acp-7-4419-2007.CrossRefGoogle Scholar
  23. Schultz, M., Rast, S., van het Bolscher, M., Pulles, T., Brand, R., Pereira, J., Mota, B., Spessa, A., Dalsøren, S., van Nojie, T., & Szopa, S. (2007). Emission data sets and methodologies for estimating emissions. Report of the RETRO European project, EU-Contract No. EVK2-CT-2002-00170, available at: http://retro-archive.iek.fz-juelich.de/data/documents/reports/.
  24. Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L., & Guenther, A. (2009). Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmospheric Chemistry and Physics, 9, 3663–3679. doi:10.5194/acp-9-3663-2009.CrossRefGoogle Scholar
  25. Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., De Mazière, M., Vigouroux, C., Hendrick, F., George, M., Clerbaux, C., Coheur, P.-F., & Guenther, A. (2015). How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmospheric Chemistry and Physics, 15, 11861–11884. doi:10.5194/acp-15-11861-2015.CrossRefGoogle Scholar
  26. Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., & Zhu, T. (2015). Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 15, 10529–10566. doi:10.5194/acp-15-10529-2015.CrossRefGoogle Scholar
  27. Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J.-H., & Yarber, K. F. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research, 108, D21. doi:10.1029/2002JD003093.CrossRefGoogle Scholar
  28. Su, S., Bengang, L., Cui, S., & Tao, S. (2011). Sulfur dioxide emissions from combustion in China: From 1990 to 2007. Environmental Science & Technology, 45(19), 8403–8410. doi:10.1021/es201656f.CrossRefGoogle Scholar
  29. van Aardenne, J. A., Dentener, F. J., Olivier, J. G. J., Klein Goldewijk, C. G. M., & Lelieveld, J. (2001). A 1x1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochemical Cycles, 15(4), 909–928.CrossRefGoogle Scholar
  30. van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5–31. doi:10.1007/s10584-011-0148-z.CrossRefGoogle Scholar
  31. Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., Wang, B., Liu, X., Li, W., Huang, Y., Zhang, Y., Lu, Y., Chen, H., Chen, Y., Wang, C., Zhu, D., Wang, X., Li, B., Liu, W., & Ma, J. (2012). Black carbon emissions in China from 1949 to 2050. Environmental Science & Technology, 46(14), 7595–7603.CrossRefGoogle Scholar
  32. Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C. P., Morikawa, T., Woo, J. H., Kim, Y., Fu, X., Xu, J. Y., Hao, J. M., & He, K. B. (2014). Emission trends and mitigation options for air pollutants in East Asia. Atmospheric Chemistry and Physics, 14, 6571–6603. doi:10.5194/acp-14-6571-2014.CrossRefGoogle Scholar
  33. Wei, W., Wang, S., Chatani, S., Klimont, Z., Cofala, J., & Hao, J. (2008). Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 42, 4976–4988.CrossRefGoogle Scholar
  34. Wei, W., Wang, S. J., & Hao, S. (2011). Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010–2020. Atmospheric Environment., 2011, 45, 6863–6871. doi:10.1016/j.atmosenv.2011.01.013.CrossRefGoogle Scholar
  35. Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., & Yao, Z. L. (2009). Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9, 5131–5153. doi:10.5194/acp-9-5131-2009.CrossRefGoogle Scholar
  36. Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., & Hao, J. (2011). Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China. Atmospheric Chemistry and Physics, 11, 2295–2308. doi:10.5194/acp-11-2295-2011.CrossRefGoogle Scholar
  37. Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J., & Amann, M. (2013a). NOx emissions in China: Historical trends and future perspectives. Atmospheric Chemistry and Physics, 13, 9869–9897. doi:10.5194/acp-13-9869-2013.CrossRefGoogle Scholar
  38. Zhao, Y., Zhang, J., & Nielsen, C. P. (2013b). The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China. Atmospheric Chemistry and Physics, 13, 487–508. doi:10.5194/acp-13-487-2013.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Claire Granier
    • 1
    • 2
    • 3
    • 4
  • Thierno Doumbia
    • 2
  • Louise Granier
    • 2
  • Katerina Sindelarova
    • 2
    • 5
  • Gregory J. Frost
    • 3
  • Idir Bouarar
    • 6
  • Catherine Liousse
    • 1
  • Sabine Darras
    • 7
  • Jenny Stavrakou
    • 8
  1. 1.Laboratoire d’AérologieToulouseFrance
  2. 2.NOAA Earth System Research LaboratoryBoulderUSA
  3. 3.LATMOS/IPSLUPMC University Paris 06 Sorbonne UniversitiesParisFrance
  4. 4.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  5. 5.Charles University of PraguePragueCzech Republic
  6. 6.Max Planck Institute for MeteorologyHamburgGermany
  7. 7.Observatoire Midi-PyrénéesToulouseFrance
  8. 8.Belgian Institute for Space AeronomyBrusselsBelgium

Personalised recommendations