Advertisement

Algebraic Curves and Their Moduli

  • E. SernesiEmail author
Chapter
Part of the Lecture Notes of the Unione Matematica Italiana book series (UMILN, volume 21)

Abstract

This survey is modeled on the CIMPA introductory lectures I gave in Guanajuato in February 2016 about moduli of curves. Surveys on this topic abound and for this reason I decided to focus on few specific aspects giving some illustration of the relation between local and global properties of moduli. The central theme is the interplay between the various notions of “generality” for a curve of genus g. Of course these notes reflect my own view of the subject. For a recent comprehensive text on moduli of curves I refer to Arbarello et al. (Geometry of algebraic curves, Springer, Berlin, 2011).

Notes

Acknowledgements

I want to warmly thank the Organizing Committee of the CIMPA School for inviting me to lecture in Guanajuato. Special additional thanks go to Leticia Brambila Paz for her perfect organizing job and for her enthusiastic presence during the school. I also thank the other speakers and the participants for creating a friendly and stimulating atmosphere. I am grateful to the referee for a careful reading and for useful remarks.

References

  1. 1.
    E. Arbarello, A. Bruno, Rank two vector bundles on polarized Halphen surfaces and the Gauss-Wahl map for du Val curves. arXiv:1609.09256Google Scholar
  2. 2.
    E. Arbarello, M. Cornalba, Su una congettura di Petri. Comment. Math. Helv. 56, 1–38 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. Arbarello, A. Bruno, G. Farkas, G. Saccà, Explicit Brill-Noether-Petri general curves. arXiv:1511.07321Google Scholar
  4. 4.
    E. Arbarello, A. Bruno, E. Sernesi, On two conjectures by J. Wahl. arXiv:1507.05002Google Scholar
  5. 5.
    E. Arbarello, M. Cormalba, P. Griffiths, Geometry of Algebraic Curves, vol. II. Grundlehren der mathematischen Wissenschaften, vol. 268 (Springer, Berlin, 2011)Google Scholar
  6. 6.
    A. Brill, M. Noether, Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie. Math. Ann. 7, 269–310 (1873)CrossRefGoogle Scholar
  7. 7.
    A. Bruno, A. Verra, M 15 is rationally connected, in Projective Varieties with Unexpected Properties, pp. 51–65 (Walter de Gruyter, Berlin, 2005)Google Scholar
  8. 8.
    M.C. Chang, Z. Ran, Unirationality of the moduli spaces of curves of genus 11, 13 (and 12). Invent. Math. 76, 41–54 (1984)Google Scholar
  9. 9.
    M.C. Chang, Z. Ran, On the slope and Kodaira dimension of \(\overline{M}_{g}\) for small g. J. Differ. Geom. 34, 267–274 (1991)Google Scholar
  10. 10.
    C. Ciliberto, J. Harris, R. Miranda, On the surjectivity of the Wahl map. Duke Math. J. 57, 829–858 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus. Publ. Math. IHES 36, 75–110 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. Diaz, Exceptional Weierstrass Points and the Divisor on Moduli Space that They Define, vol. 56 (Memoirs of the American Mathematical Society, Providence, RI, 1985)zbMATHGoogle Scholar
  13. 13.
    I. Dolgachev, Classical Algebraic Geometry - A Modern View (Cambridge University Press, Cambridge, 2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    D. Eisenbud, J. Harris, A simpler proof of the Gieseker-Petri theorem on special divisors. Invent. Math. 74, 269–280 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. Eisenbud, J. Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23. Invent. Math. 90, 359–387 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    G. Farkas, The geometry of the moduli space of curves of genus 23. Math. Ann. 318, 43–65 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. Farkas, \(\overline{M}_{22}\) is of general type. Manuscript (2005)Google Scholar
  18. 18.
    W. Fulton, On the irreducibility of the moduli space of curves. Appendix to a paper of Harris-Mumford. Invent. Math. 67, 87–88 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    W. Fulton, R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors. Acta Math. 146, 271–283 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D. Gieseker, Stable curves and special divisors: Petri’s conjecture. Invent. Math. 66, 251–275 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P. Griffiths, J. Harris, The dimension of the variety of special linear systems on a general curve. Duke Math. J. 47, 233–272 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A. Grothendieck, Géométrie formelle et géométrie algébrique. Seminaire Bourbaki, exp. 182 (1959)Google Scholar
  23. 23.
    A. Grothendieck, Le theoreme d’existence en theorie formelle des modules. Seminaire Bourbaki, exp. 195 (1960)Google Scholar
  24. 24.
    A. Grothendieck, Les schemas de Hilbert. Seminaire Bourbaki, exp. 221 (1960)Google Scholar
  25. 25.
    J. Harris, On the Severi problem. Invent. Math. 84, 445–461 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves. Invent. Math. 67, 23–86 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    R. Hartshorne, Deformation Theory. Graduate text in Mathematics, vol. 257 (Springer, Berlin, 2010)Google Scholar
  28. 28.
    P.I. Katsylo, The moduli variety of curves of genus 4 is rational. Dokl. Akad. Nauk SSSR 290, 1292–1294 (1986)MathSciNetGoogle Scholar
  29. 29.
    P.I. Katsylo, Rationality of the moduli variety of curves of genus 5. Math. USSR Sbornik 72, 439–445 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    P.I. Katsylo, Rationality of the moduli variety of curves of genus 3. Comment. Math. Helv. 71, 507–524 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    G. Kempf, Schubert Methods with an Application to Algebraic Curves (Publication of Mathematisch Centrum, Amsterdam, 1972)zbMATHGoogle Scholar
  32. 32.
    S. Kleiman, D. Laksov, On the existence of special divisors. Am. Math. J. 94, 431–436 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    K. Kodaira, D.C. Spencer, On deformations of complex analytic structures I, II. Ann. Math. 67, 328–466 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    R. Lazarsfeld, Brill-Noether-Petri without degenerations. J. Differ. Geom. 23, 299–307 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    S. Mori, S. Mukai, The uniruledness of the moduli space of curves of genus 11, in Springer Lecture Notes in Mathematics, vol. 1016 (Springer, Berlin, 1983), pp. 334–353Google Scholar
  36. 36.
    D. Mumford, Lectures on Curves on an Algebraic Surface (Princeton University Press, Princeton, 1966)zbMATHGoogle Scholar
  37. 37.
    D. Mumford, Problems of present day mathematics, VI: algebraic geometry, in Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics, Part 1, vol. 28 (American Mathematical Society, Providence, 1976), pp. 44–45Google Scholar
  38. 38.
    D. Mumford, J. Fogarty, Geometric Invariant Theory, 2nd enlarged edn. Ergebnisse b. vol. 34 (Springer, Berlin, 1982)Google Scholar
  39. 39.
    M. Noether, Note über die Normalcurven für p = 5, 6, 7. Math. Ann. 26, 143–150 (1886)Google Scholar
  40. 40.
    K. Petri, Über Spezialkurven I. Math. Ann. 93, 182–209 (1925)Google Scholar
  41. 41.
    M. Schlessinger, Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    E. Sernesi, L’unirazionalità della varietà dei moduli delle curve di genere dodici. Ann. Sc. Norm. Super. Pisa (4) 8, 405–439 (1981)Google Scholar
  43. 43.
    E. Sernesi, Deformations of Algebraic Schemes. Grundlehren der Mathematischen Wissenschaften, vol. 334 (Springer, Berlin, 2006)Google Scholar
  44. 44.
    F. Severi, Sulla classificazione delle curve algebriche e sul teorema di esistenza di Riemann. Rend. Accademia Naz. Lincei (5) 241, 877–888/1011–1020 (1915)Google Scholar
  45. 45.
    F. Severi, Vorlesungen uber Algebraische Geometrie (Taubner, Leipzig, 1921)CrossRefzbMATHGoogle Scholar
  46. 46.
    N.I. Shepherd-Barron, Invariant theory of S 5 and the rationality of M 6. Compos. Math. 70, 13–25 (1989)MathSciNetzbMATHGoogle Scholar
  47. 47.
    A. Verra, The unirationality of the moduli spaces of curves of genus 14 or lower. Compos. Math. 141, 1425–1444 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    A. Verra, Rational parametrizations of moduli spaces of curves, in Handbook of Moduli III (International Press, Boston, 2008–2012), pp. 431–507Google Scholar
  49. 49.
    J. Wahl, The Jacobian algebra of a graded Gorenstein singularity. Duke Math. J. 55, 843–871 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità Roma TreRomaItaly

Personalised recommendations