Advertisement

Higher Dimensional Varieties and their Moduli Spaces

Guanajuato, Mexico
  • Paolo CasciniEmail author
Chapter
Part of the Lecture Notes of the Unione Matematica Italiana book series (UMILN, volume 21)

Abstract

To explain some of the main ideas of the Minimal Model Program and some of the tools used, we use some basic facts from graph theory. In particular, we describe a directed graph associated to the category of projective varieties. For this reason, we recall some of the basic definitions in graph theory.

Notes

Acknowledgements

These are the notes for the CIMPA-CIMAT-ICTP School “Moduli of Curves” in Guanajuato, México, 22 February–4 March 2016. I would like to thank the organisers and all the participants for the invitation and for giving me the opportunity to present this material at the school. I would also like to thank the referee for reading a preliminary version of these notes and providing many useful comments.

References

  1. 1.
    C. Birkar, Ascending chain condition for log canonical thresholds and termination of log flips. Duke Math. J. 136(1), 173–180 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Birkar, P. Cascini, C.D. Hacon, J. McKernan, Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)Google Scholar
  3. 3.
    A. Bruno, K. Matsuki, Log Sarkisov program. Int. J. Math. 8(4), 451–494 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Cascini, V. Lazić, The minimal model program revisited, in Contributions to Algebraic Geometry (European Mathematical Society, Zurich, 2012), pp. 169–187CrossRefzbMATHGoogle Scholar
  5. 5.
    P. Cascini, V. Lazić, New outlook on the minimal model program, I. Duke Math. J. 161(12), 2415–2467 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Corti, Factoring birational maps of threefolds after Sarkisov. J. Algebr. Geom. 4(2), 223–254 (1995)MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. Corti (ed.), Flips for 3-Folds and 4-Folds. Oxford Lecture Series in Mathematics and its Applications, vol. 35 (Oxford University Press, Oxford, 2007)Google Scholar
  8. 8.
    A. Corti, V. Lazić, New outlook on the minimal model program, II. Math. Ann. 356(2), 617–633 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    O. Fujino, S. Mori, A canonical bundle formula. J. Differ. Geom. 56(1), 167–188 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Y. Gongyo, On weak Fano varieties with log canonical singularities. J. Reine Angew. Math. 665, 237–252 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    C.D. Hacon, J. McKernan, Existence of minimal models for varieties of log general type II. J. Am. Math. Soc. 23(2), 469–490 (2010)Google Scholar
  12. 12.
    C. Hacon, J. McKernan, The Sarkisov program. J. Algebr. Geom. 22(2), 389–405 (2013)Google Scholar
  13. 13.
    C. Hacon, J. McKernan, C. Xu, Acc for log canonical thresholds (2012)Google Scholar
  14. 14.
    Y. Kawamata, On the length of an extremal rational curve. Invent. Math. 105, 609–611 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Y. Kawamata, Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419–423 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Kollár, S. Mori, Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998)Google Scholar
  17. 17.
    J. Kollár et al., Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992zbMATHGoogle Scholar
  18. 18.
    R. Lazarsfeld, Positivity in Algebraic Geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 48 (Springer, Berlin, 2004)Google Scholar
  19. 19.
    B. Lehmann, A cone theorem for NEF curves. J. Algebr. Geom. 21(3), 473–493 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    C.-L. Wang, K-equivalence in birational geometry and characterizations of complex elliptic genera. J. Algebr. Geom. 12(2), 285–306 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations