Advertisement

Comparison of Mesh Simplification Tools in a 3D Watermarking Framework

  • Francesca UcchedduEmail author
  • Michaela Servi
  • Rocco Furferi
  • Lapo Governi
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 76)

Abstract

Given a to-be-watermarked 3D model, a transformed domain analysis is needed to guarantee a robust embedding without compromising the visual quality of the result. A multiresolution remeshing of the model allows to represent the 3D surface in a transformed domain suitable for embedding a robust and imperceptible watermark signal. Simplification of polygonal meshes is the basic step for a multiresolution remeshing of a 3D model; this step is needed to obtain the model approximation (coarse version) from which a refinement framework (i.e. 3D wavelet analysis, spectral analysis, …) able to represent the model at multiple resolution levels, can be performed. The simplification algorithm should satisfy some requirements to be used in a watermarking system: the repeatability of the simplification, and the robustness of it to noise or, more generally, to slight modifications of the full resolution mesh. The performance of a number of software packages for mesh simplification, including both commercial and academic offerings, are compared in this survey. We defined a benchmark for testing the different software in the watermarking scenario and reported a comprehensive analysis of the software performances based on the geometric distortions measurement of the simplified versions.

Keywords

3D watermarking Wavelets 3D Mesh simplification Mesh comparison 

References

  1. 1.
    Dodgson, N.A., Floater, M.S., Sabin, M.A.: Advances in multiresolution for geometric modelling. Springer-Verlag (2005)Google Scholar
  2. 2.
    Lounsbery, M., DeRose, T.D., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16(1), 34–73 (1997)CrossRefGoogle Scholar
  3. 3.
    Kanai, S., Date, H., Kishinami, T.: Digital watermarking for 3D polygons using multiresolution wavelet decomposition. In: Proceedings of the International Workshop on Geometric Modeling: Fundamentals and Applications 1998, pp. 296–307 (1998)Google Scholar
  4. 4.
    Uccheddu, F., Corsini, M., Barni, M.: Wavelet-based blind watermarking of 3D models. In: Proceedings of the ACM Multimedia and Security Workshop 2004, pp. 143–154 (2004)Google Scholar
  5. 5.
    Wang, K., Lavouè, G., Denis, F., Baskurt, A.: A comprehensive survey on three-dimensional mesh watermarking. IEEE Trans. Multimedia 10(8), 1513–1527 (2008)CrossRefGoogle Scholar
  6. 6.
    Alface, P.R., Macq, B.: Blind watermarking of 3D meshes using robust feature points detection. In: Proceedings of the IEEE International Conference on Image Processing 2005, vol. 1, pp. 693–696 (2005)Google Scholar
  7. 7.
    Puggelli, L., Volpe, Y., Giurgola, S.: Analysis of deformations induced by manufacturing processes of fine porcelain whiteware. In: Advances on Mechanics, Design Engineering and Manufacturing. Springer International Publishing, pp. 1063–1072 (2017)Google Scholar
  8. 8.
    Furferi, R., Governi, L., Uccheddu, F., Volpe, Y.: A RGB-D based instant body-scanning solution for compact box installation. In: Advances on Mechanics, Design Engineering and Manufacturing. Springer International Publishing, pp. 387–396 (2017)Google Scholar
  9. 9.
    Buonamici, F., Carfagni, M., Volpe, Y.: Recent strategies for 3D reconstruction using reverse engineering: a bird’s eye view. In: Advances on Mechanics, Design Engineering and Manufacturing. Springer International Publishing, pp. 841–850 (2017)Google Scholar
  10. 10.
    Pelagotti, A., Ferrara, P., Uccheddu, F.: Improving on fast and automatic texture mapping of 3D dense models. In: 2012 18th International Conference on Virtual Systems and Multimedia (VSMM). IEEE (2012)Google Scholar
  11. 11.
    Uccheddu, F., Pelagotti, A., Picchioni, F.: A greedy multiresolution method for quasi automatic texture mapping. In: SPIE Optical Metrology (2011). International Society for Optics and PhotonicsGoogle Scholar
  12. 12.
    Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. ACM Siggraph Comput. Graph. 26(2), 65–70 (1992). ACMCrossRefGoogle Scholar
  13. 13.
    Luebke, D., Hallen, B.: Perceptually driven simplification for interactive rendering. In: Rendering Techniques 2001. Springer Vienna, pp. 223–234 (2001)Google Scholar
  14. 14.
    Klein, R., Liebich, G., Straßer, W.: Mesh reduction with error control. In: Proceedings of the 7th Conference on Visualization 1996. IEEE Computer Society Press (1996)Google Scholar
  15. 15.
    Boubekeur, T., Alexa, M.: Mesh simplification by stochastic sampling and topological clustering. Comput. Graph. 33(3), 241–249 (2009)CrossRefGoogle Scholar
  16. 16.
    Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: Proceedings of the Conference on Visualization 1999: Celebrating Ten Years. IEEE Computer Society Press (1999)Google Scholar
  17. 17.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co. (1997)Google Scholar
  18. 18.
    Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Comput. Graph. 22(1), 37–54 (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Siggraph 1997, Course Notes (1997)Google Scholar
  20. 20.
    Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)CrossRefGoogle Scholar
  21. 21.
    Mocanu, B., Tapu, R., Petrescu, T., Tapu, E.: An experimental evaluation of 3D mesh decimation techniques. In: 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS). IEEE (2011)Google Scholar
  22. 22.
    Taime, A., Saaidi, A., Satori, K.: Comparative study of mesh simplification algorithms. In: Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Springer International Publishing (2016)Google Scholar
  23. 23.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: measuring errors between surfaces using the hausdorff distance. In: Proceedings 2002 IEEE International Conference on Multimedia and Expo, ICME 2002, vol. 1. IEEE (2002)Google Scholar
  24. 24.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998). Blackwell PublishersCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Francesca Uccheddu
    • 1
    Email author
  • Michaela Servi
    • 1
  • Rocco Furferi
    • 1
  • Lapo Governi
    • 1
  1. 1.University of FlorenceFlorenceItaly

Personalised recommendations