Advertisement

A New Threshold Relative Radiometric Correction Algorithm (TRRCA) of Multiband Satellite Data

  • Antonio NovelliEmail author
  • Manuel A. Aguilar
  • Eufemia Tarantino
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 76)

Abstract

It is well known that remote sensed scenes could be affected by many factors and, for optimum change detection, these unwanted effects must be removed. In this study a new algorithm is proposed for PIF (Pseudo Invariant Features) extraction and relative radiometric normalization. The new algorithm can be labeled as a supervised one and combines three methods for the detection of PIFs: Moment distance index (MDI), Normalized Difference Vegetation Index (NDVI) masks morphological erosion and dilate operators. In order to prove its effectiveness, the algorithm was tested by using Landsat 8 scenes of the “Mar de Plstico” landscape of the Andalusian Almería. Many tests were performed in order to provide a set of valid input parameters for the chosen environments. Lastly, the results were statistically assessed with parametric and non-parametric tests showing very good and stable results in the four different study areas.

Keywords

Relative radiometric normalization PIF Multispectral imagery Landsat 8 Change detection 

Notes

Acknowledgement

This work was supported by the Spanish Ministry of Economy and Competitiveness (Spain) and the European Union FEDER funds (Grant Reference AGL2014-56017-R). It takes part of the general research lines promoted by the Agrifood Campus of International Excellence ceiA3.

References

  1. 1.
    Janzen, D.T., Fredeen, A.L., Wheate, R.D.: Radiometric correction techniques and accuracy assessment for landsat TM data in remote forested regions. Can. J. Remote Sens. 32(5), 330–340 (2006)CrossRefGoogle Scholar
  2. 2.
    Novelli, A., Caradonna, G., Tarantino, E.: Evaluation of relative radiometric correction techniques on landsat 8 OLI sensor data. In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment, International Society for Optics and Photonics 968808 (2016)Google Scholar
  3. 3.
    Tarantino, E., Novelli, A., Aquilino, M., Figorito, B., Fratino, U.: Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT satellite imagery over an ephemeral river area. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 6(4), 83–102 (2015)CrossRefGoogle Scholar
  4. 4.
    Du, Y., Teillet, P.M., Cihlar, J.: Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 82(1), 123–134 (2002)CrossRefGoogle Scholar
  5. 5.
    Yang, X., Lo, C., et al.: Relative radiometric normalization performance for change detection from multi-date satellite images. Photogram. Eng. Remote Sens. 66(8), 967–980 (2000)Google Scholar
  6. 6.
    Jensen, J.: Image preprocessing: Radiometric and geometric correction. In: Introductory Digital Image Processing, 30p (1996). Chapter 6Google Scholar
  7. 7.
    Mandanici, E., Franci, F., Bitelli, G., Agapiou, A., Alexakis, D., Hadjimitsis, D.: Comparison between empirical and physically based models of atmospheric correction. In: Third International Conference on Remote Sensing and Geoinformation of the Environment, International Society for Optics and Photonics 95350E (2015)Google Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E., Eddins, S.: Morphological image processing. Digit. Image Process. 3, 627–688 (2008)Google Scholar
  9. 9.
    Canty, M.J., Nielsen, A.A.: Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted mad transformation. Remote Sens. Environ. 112(3), 1025–1036 (2008)CrossRefGoogle Scholar
  10. 10.
    de Carvalho, O.A., Guimarães, R.F., Silva, N.C., Gillespie, A.R., Gomes, R.A.T., Silva, C.R., de Carvalho, A.P.F.: Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression. Remote Sens. 5(6), 2763–2794 (2013)CrossRefGoogle Scholar
  11. 11.
    Tokola, T., Löfman, S., Erkkilä, A.: Relative calibration of multitemporal LANDSAT data for forest cover change detection. Remote Sens. Environ. 68(1), 1–11 (1999)CrossRefGoogle Scholar
  12. 12.
    Caselles, V., Garcia, M.L.: An alternative simple approach to estimate atmospheric correction in multitemporal studies. Int. J. Remote Sens. 10(6), 1127–1134 (1989)CrossRefGoogle Scholar
  13. 13.
    Schott, J.R., Salvaggio, C., Volchok, W.J.: Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 26(1) 1–14, IN1, 15–16 (1988)Google Scholar
  14. 14.
    Salas, E.A.L., Boykin, K.G., Valdez, R.: Multispectral and texture feature application in image-object analysis of summer vegetation in eastern tajikistan pamirs. Remote Sens. 8(1), 78 (2016)CrossRefGoogle Scholar
  15. 15.
    Aguilar, M.A., Nemmaoui, A., Novelli, A., Aguilar, F.J., Lorca, A.G.: Object-based greenhouse mapping using very high resolution satellite data and landsat 8 time series. Remote Sens. 8(6), 513 (2016)CrossRefGoogle Scholar
  16. 16.
    Tarantino, E., Figorito, B.: Steerable filtering in interactive tracing of archaeological linear features using digital true colour aerial images. Int. J. Digit. Earth 7(11), 870–880 (2014)CrossRefGoogle Scholar
  17. 17.
    Tarantino, E., Figorito, B.: Extracting buildings from true color stereo aerial images using a decision making strategy. Remote Sens. 3(8), 1553–1567 (2011)CrossRefGoogle Scholar
  18. 18.
    Van Cauwenbergh, N., Pinte, D., Tilmant, A., Frances, I., Pulido-Bosch, A., Vanclooster, M.: Multi-objective, multiple participant decision support for water management in the andarax catchment, almeria. Environ. Geol. 54(3), 479–489 (2008)CrossRefGoogle Scholar
  19. 19.
    Giordano, R., Milella, P., Portoghese, I., Vurro, M., Apollonio, C., D’Agostino, D., Lamaddalena, N., Scardigno, A., Piccinni, A.: An innovative monitoring system for sustainable management of groundwater resources: Objectives, stakeholder acceptability and implementation strategy. In: 2010 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), pp. 32–37. IEEE (2010)Google Scholar
  20. 20.
    Giordano, R., D’Agostino, D., Apollonio, C., Scardigno, A., Pagano, A., Portoghese, I., Lamaddalena, N., Piccinni, A.F., Vurro, M.: Evaluating acceptability of groundwater protection measures under different agricultural policies. Agric. Water Manage. 147, 54–66 (2015)CrossRefGoogle Scholar
  21. 21.
    Roy, D.P., Wulder, M., Loveland, T., Woodcock, C., Allen, R., Anderson, M., Helder, D., Irons, J., Johnson, D., Kennedy, R., et al.: Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)CrossRefGoogle Scholar
  22. 22.
    Roy, D.P., Borak, J.S., Devadiga, S., Wolfe, R.E., Zheng, M., Descloitres, J.: The modis land product quality assessment approach. Remote Sens. Environ. 83(1), 62–76 (2002)CrossRefGoogle Scholar
  23. 23.
    Hall, F.G., Strebel, D.E., Nickeson, J.E., Goetz, S.J.: Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 35(1), 11–27 (1991)CrossRefGoogle Scholar
  24. 24.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  25. 25.
    Tucker, C.J.: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8(2), 127–150 (1979)CrossRefGoogle Scholar
  26. 26.
    Boggs, P.T., Byrd, R.H., Schnabel, R.B.: A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J. Sci. Stat. Comput. 8(6), 1052–1078 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Novelli, A., Aguilar, M.A., Nemmaoui, A., Aguilar, F.J., Tarantino, E.: Performance evaluation of object based greenhouse detection from sentinel-2 MSI and landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinformation 52, 403–411 (2016)CrossRefGoogle Scholar
  28. 28.
    Novelli, A., Tarantino, E.: Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens. Lett. 6(12), 933–941 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Antonio Novelli
    • 1
    Email author
  • Manuel A. Aguilar
    • 2
  • Eufemia Tarantino
    • 1
  1. 1.Politecnico di BariBariItaly
  2. 2.Department of EngineeringUniversity of AlmeríaAlmeríaSpain

Personalised recommendations