Skip to main content

A New Threshold Relative Radiometric Correction Algorithm (TRRCA) of Multiband Satellite Data

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services 2017 (KES-IIMSS-18 2018)

Abstract

It is well known that remote sensed scenes could be affected by many factors and, for optimum change detection, these unwanted effects must be removed. In this study a new algorithm is proposed for PIF (Pseudo Invariant Features) extraction and relative radiometric normalization. The new algorithm can be labeled as a supervised one and combines three methods for the detection of PIFs: Moment distance index (MDI), Normalized Difference Vegetation Index (NDVI) masks morphological erosion and dilate operators. In order to prove its effectiveness, the algorithm was tested by using Landsat 8 scenes of the “Mar de Plstico” landscape of the Andalusian Almería. Many tests were performed in order to provide a set of valid input parameters for the chosen environments. Lastly, the results were statistically assessed with parametric and non-parametric tests showing very good and stable results in the four different study areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janzen, D.T., Fredeen, A.L., Wheate, R.D.: Radiometric correction techniques and accuracy assessment for landsat TM data in remote forested regions. Can. J. Remote Sens. 32(5), 330–340 (2006)

    Article  Google Scholar 

  2. Novelli, A., Caradonna, G., Tarantino, E.: Evaluation of relative radiometric correction techniques on landsat 8 OLI sensor data. In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment, International Society for Optics and Photonics 968808 (2016)

    Google Scholar 

  3. Tarantino, E., Novelli, A., Aquilino, M., Figorito, B., Fratino, U.: Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT satellite imagery over an ephemeral river area. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 6(4), 83–102 (2015)

    Article  Google Scholar 

  4. Du, Y., Teillet, P.M., Cihlar, J.: Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 82(1), 123–134 (2002)

    Article  Google Scholar 

  5. Yang, X., Lo, C., et al.: Relative radiometric normalization performance for change detection from multi-date satellite images. Photogram. Eng. Remote Sens. 66(8), 967–980 (2000)

    Google Scholar 

  6. Jensen, J.: Image preprocessing: Radiometric and geometric correction. In: Introductory Digital Image Processing, 30p (1996). Chapter 6

    Google Scholar 

  7. Mandanici, E., Franci, F., Bitelli, G., Agapiou, A., Alexakis, D., Hadjimitsis, D.: Comparison between empirical and physically based models of atmospheric correction. In: Third International Conference on Remote Sensing and Geoinformation of the Environment, International Society for Optics and Photonics 95350E (2015)

    Google Scholar 

  8. Gonzalez, R.C., Woods, R.E., Eddins, S.: Morphological image processing. Digit. Image Process. 3, 627–688 (2008)

    Google Scholar 

  9. Canty, M.J., Nielsen, A.A.: Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted mad transformation. Remote Sens. Environ. 112(3), 1025–1036 (2008)

    Article  Google Scholar 

  10. de Carvalho, O.A., Guimarães, R.F., Silva, N.C., Gillespie, A.R., Gomes, R.A.T., Silva, C.R., de Carvalho, A.P.F.: Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression. Remote Sens. 5(6), 2763–2794 (2013)

    Article  Google Scholar 

  11. Tokola, T., Löfman, S., Erkkilä, A.: Relative calibration of multitemporal LANDSAT data for forest cover change detection. Remote Sens. Environ. 68(1), 1–11 (1999)

    Article  Google Scholar 

  12. Caselles, V., Garcia, M.L.: An alternative simple approach to estimate atmospheric correction in multitemporal studies. Int. J. Remote Sens. 10(6), 1127–1134 (1989)

    Article  Google Scholar 

  13. Schott, J.R., Salvaggio, C., Volchok, W.J.: Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 26(1) 1–14, IN1, 15–16 (1988)

    Google Scholar 

  14. Salas, E.A.L., Boykin, K.G., Valdez, R.: Multispectral and texture feature application in image-object analysis of summer vegetation in eastern tajikistan pamirs. Remote Sens. 8(1), 78 (2016)

    Article  Google Scholar 

  15. Aguilar, M.A., Nemmaoui, A., Novelli, A., Aguilar, F.J., Lorca, A.G.: Object-based greenhouse mapping using very high resolution satellite data and landsat 8 time series. Remote Sens. 8(6), 513 (2016)

    Article  Google Scholar 

  16. Tarantino, E., Figorito, B.: Steerable filtering in interactive tracing of archaeological linear features using digital true colour aerial images. Int. J. Digit. Earth 7(11), 870–880 (2014)

    Article  Google Scholar 

  17. Tarantino, E., Figorito, B.: Extracting buildings from true color stereo aerial images using a decision making strategy. Remote Sens. 3(8), 1553–1567 (2011)

    Article  Google Scholar 

  18. Van Cauwenbergh, N., Pinte, D., Tilmant, A., Frances, I., Pulido-Bosch, A., Vanclooster, M.: Multi-objective, multiple participant decision support for water management in the andarax catchment, almeria. Environ. Geol. 54(3), 479–489 (2008)

    Article  Google Scholar 

  19. Giordano, R., Milella, P., Portoghese, I., Vurro, M., Apollonio, C., D’Agostino, D., Lamaddalena, N., Scardigno, A., Piccinni, A.: An innovative monitoring system for sustainable management of groundwater resources: Objectives, stakeholder acceptability and implementation strategy. In: 2010 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), pp. 32–37. IEEE (2010)

    Google Scholar 

  20. Giordano, R., D’Agostino, D., Apollonio, C., Scardigno, A., Pagano, A., Portoghese, I., Lamaddalena, N., Piccinni, A.F., Vurro, M.: Evaluating acceptability of groundwater protection measures under different agricultural policies. Agric. Water Manage. 147, 54–66 (2015)

    Article  Google Scholar 

  21. Roy, D.P., Wulder, M., Loveland, T., Woodcock, C., Allen, R., Anderson, M., Helder, D., Irons, J., Johnson, D., Kennedy, R., et al.: Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)

    Article  Google Scholar 

  22. Roy, D.P., Borak, J.S., Devadiga, S., Wolfe, R.E., Zheng, M., Descloitres, J.: The modis land product quality assessment approach. Remote Sens. Environ. 83(1), 62–76 (2002)

    Article  Google Scholar 

  23. Hall, F.G., Strebel, D.E., Nickeson, J.E., Goetz, S.J.: Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 35(1), 11–27 (1991)

    Article  Google Scholar 

  24. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  25. Tucker, C.J.: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8(2), 127–150 (1979)

    Article  Google Scholar 

  26. Boggs, P.T., Byrd, R.H., Schnabel, R.B.: A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J. Sci. Stat. Comput. 8(6), 1052–1078 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Novelli, A., Aguilar, M.A., Nemmaoui, A., Aguilar, F.J., Tarantino, E.: Performance evaluation of object based greenhouse detection from sentinel-2 MSI and landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinformation 52, 403–411 (2016)

    Article  Google Scholar 

  28. Novelli, A., Tarantino, E.: Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens. Lett. 6(12), 933–941 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Spanish Ministry of Economy and Competitiveness (Spain) and the European Union FEDER funds (Grant Reference AGL2014-56017-R). It takes part of the general research lines promoted by the Agrifood Campus of International Excellence ceiA3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Novelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Novelli, A., Aguilar, M.A., Tarantino, E. (2018). A New Threshold Relative Radiometric Correction Algorithm (TRRCA) of Multiband Satellite Data. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59480-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59479-8

  • Online ISBN: 978-3-319-59480-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics