Dimensionality Reduction Strategies for CNN-Based Classification of Histopathological Images

  • Silvia CascianelliEmail author
  • Raquel Bello-Cerezo
  • Francesco Bianconi
  • Mario L. Fravolini
  • Mehdi Belal
  • Barbara Palumbo
  • Jakob N. Kather
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 76)


Features from pre-trained Convolutional Neural Newtorks (CNN) have proved to be effective for many tasks such as object, scene and face recognition. Compared with traditional, hand-designed image descriptors, CNN-based features produce higher-dimensional feature vectors. In specific applications where the number of samples may be limited – as in the case of histopatological images – high dimensionality could potentially cause overfitting and redundancy in the information to be processed and stored. To overcome these potential problems feature reduction methods can be applied, at the cost of a moderate reduction in the discrimination accuracy. In this paper we investigate dimensionality reduction schemes for CNN-based features applied to computer-assisted classification of histopathological images. The purpose of this study is to find the best trade-off between accuracy and dimensionality. Specifically, we test two well-known techniques (i.e.: Principal Component Analysis and Gaussian Random Projection) and propose a novel reduction strategy based on the cross-correlation between the components of the feature vector. The results show that it is possible to reduce CNN-based features by a high ratio with a moderate decrease in accuracy with respect to the original values.


Convolutional Neural Networks Feature reduction Histopathological images Image classification 



This work was partially supported by the Department of Engineering at the Università degli Studi di Perugia, Italy, under project BioMeTron – Fundamental research grant D.D. 20/2015.


  1. 1.
    Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, United States, pp. 245–250, August 2001Google Scholar
  2. 2.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Secaucus (2006)zbMATHGoogle Scholar
  3. 3.
    Breast Cancer Histopathological Database (BreakHis) (2016). Last Accessed 16 Dec 2016
  4. 4.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference 2014, Nottingham, United Kingdom, September 2014Google Scholar
  5. 5.
    Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vision 118(1), 65–94 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cusano, C., Napoletano, P., Schettini, R.: Combining multiple features for color texture classification. J. Electron. Imaging 25(6), 061402 (2016)CrossRefGoogle Scholar
  7. 7.
    egfr colon stroma classification - WebMicroscope (2012). Last Accessed 6 Sep 2016
  8. 8.
    González, E., Bianconi, F., Fernández, A.: An investigation on the use of local multi-resolution patterns for image classification. Inf. Sci. 361–362, 1–13 (2016)CrossRefGoogle Scholar
  9. 9.
    He, D.-C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28(4), 509–512 (1990)CrossRefGoogle Scholar
  10. 10.
    Hertel, L., Barth, E., Kaster, T., Martinetz, T.: Deep convolutional neural networks as generic feature extractors. In: Proceedings of the International Joint Conference on Neural Networks, Killarney, Ireland, July 2015Google Scholar
  11. 11.
    Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, Hong Kong, China, pp. 306–309, December 2004Google Scholar
  12. 12.
    Kather, J.N., Weis, C., Bianconi, F., Melchers, S.S., Schad, L.R., Gaiser, T., Marx, A., Zöllner, F.G.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 27988 (2016)Google Scholar
  13. 13.
    Kather, J.N., Zöllner, F.G., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T., Marx, A., Weis, C.-A.: Collection of textures in colorectal cancer histology, May 2016. doi: 10.5281/zenodo.53169. Last Accessed 19 Sep 2016
  14. 14.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, USA, vol. 2, pp. 1097–1105, December 2012Google Scholar
  15. 15.
    Linder, N., Konsti, J., Turkki, R., Rahtu, E., Lundin, M., Nordling, S., Haglund, C., Ahonen, T., Pietikäinen, M., Lundin, J.: Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn. Pathol. 7(22), 1–11 (2012)Google Scholar
  16. 16.
    Linder, N., Martelin, E., Lundin, M., Louhimo, J., Nordling, S., Haglund, C., Lundin, J.: Xanthine oxidoreductase - clinical significance in colorectal cancer and in vitro expression of the protein in human colon cancer cells. Eur. J. Cancer 45(4), 648–655 (2009)CrossRefGoogle Scholar
  17. 17.
    Litjens, G., Sánchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., Van Der Laak, J.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6 (2016)Google Scholar
  18. 18.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Parkhi, O.M., Vedaldi, A., Zissermann, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference 2015, Swansea, United Kingdom, September 2015Google Scholar
  20. 20.
    Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, pp. 512–519, June 2014Google Scholar
  21. 21.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)Google Scholar
  22. 22.
    Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)CrossRefGoogle Scholar
  23. 23.
    Courrech Staal, E.F.W., Smit, V.T.H.B.M., van Velthuysen, M.-L.F., Spitzer-Naaykens, J.M.J., Wouters, M.W.J.M., Mesker, W.E., Tollenaar, R.A.E.M., van Sandick, J.W.: Reproducibility and validation of tumour stroma ratio scoring on oesophageal adenocarcinoma biopsies. Eur. J. Cancer 47(3), 375–382 (2011)CrossRefGoogle Scholar
  24. 24.
    Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A.: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191, 214–223 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Silvia Cascianelli
    • 1
    Email author
  • Raquel Bello-Cerezo
    • 1
  • Francesco Bianconi
    • 1
  • Mario L. Fravolini
    • 1
  • Mehdi Belal
    • 1
  • Barbara Palumbo
    • 2
  • Jakob N. Kather
    • 3
  1. 1.Department of EngineeringUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Department of Surgery and Biomedical SciencesUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.Computer Assisted Clinical Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany

Personalised recommendations