Advertisement

Improving Spatial Reasoning by Interacting with a Humanoid Robot

  • Agnese AugelloEmail author
  • Giuseppe Città
  • Manuel Gentile
  • Ignazio Infantino
  • Dario La Guardia
  • Adriano Manfré
  • Umberto Maniscalco
  • Simona Ottaviano
  • Giovanni Pilato
  • Filippo Vella
  • Mario Allegra
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 76)

Abstract

This paper analyzes the connection between spatial reasoning and STEM education from the point of view of embodied theories of cognition. A new learning model based on the use of a humanoid robot is presented with the aim of teaching and learning basic STEM concepts in a fruitful and engaging fashion.

Keywords

Mental rotation Spatial reasoning Embodied cognition STEM Cognitive architecture Humanoid robots 

References

  1. 1.
    Sianesi, B., Reenen, J.V.: The returns to education: macroeconomics. J. Econ. Surv. 17(2), 157–200 (2003)CrossRefGoogle Scholar
  2. 2.
    Krueger, A.B., Lindahl, M.: Education for growth: why and for whom? (No. w7591). National Bureau of Economic Research (2000)Google Scholar
  3. 3.
    Hanushek, E.A., Woessmann, L.: The High Cost of Low Educational Performance: The Long-Run Economic Impact of Improving PISA Outcomes. OECD Publishing, Paris Cedex (2010). 2, rue Andre Pascal, F-75775 16, FranceGoogle Scholar
  4. 4.
    Hanushek, E.A., Woessmann, L.: Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation. J. Econ. Growth 17(4), 267–321 (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hanushek, E.A., Woessmann, L.: The role of cognitive skills in economic development. J. Econ. Lit. 46(3), 607–668 (2008)CrossRefGoogle Scholar
  6. 6.
    UNESCO 2010, Engineering: Issues, challenges and opportunities for development,UNESCO, the World Federation of Engineering Organisations, the InternationalCouncil of Academies of Engineering and Technological Sciences, and the International Federation of Consulting EngineersGoogle Scholar
  7. 7.
    UNESCO 2007, Science, technology and gender: An international report, Scienceand Technology for Development Series, UNESCO, Division for Science Policy and Sustainable DevelopmentGoogle Scholar
  8. 8.
    Marginson, S., Tytler, R., Freeman, B., Roberts, K.: STEM: country comparisons: international comparisons of science, technology, engineering and mathematics (STEM) education. Final report, Australian Council of Learned Academies (2013)Google Scholar
  9. 9.
    Kanematsu, H., Barry, D.M.: STEM and ICT Education in Intelligent Environments, vol. 91, pp. 3–198. Springer (2016)Google Scholar
  10. 10.
    Russell-Gebbett, J.: Skills and strategiespupils’ approaches to three-dimensional problems in biology. J. Biol. Educ. 19(4), 293–298 (1985)CrossRefGoogle Scholar
  11. 11.
    Kozhevnikov, M., Motes, M.A., Hegarty, M.: Spatial visualization in physics problem solving. Cogn. Sci. 31(4), 549–579 (2007)CrossRefGoogle Scholar
  12. 12.
    Wu, H.K., Shah, P.: Exploring visuospatial thinking in chemistry learning. Sci. Educ. 88(3), 465–492 (2004)CrossRefGoogle Scholar
  13. 13.
    Wai, J., Lubinski, D., Benbow, C.P.: Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol. 101(4), 817 (2009)CrossRefGoogle Scholar
  14. 14.
    Shea, D.L., Lubinski, D., Benbow, C.P.: Importance of assessing spatial ability in intellectually talented young adolescents: a 20-year longitudinal study. J. Educ. Psychol. 93(3), 604 (2001)CrossRefGoogle Scholar
  15. 15.
    Uttal, D.H., Cohen, C.A.: 4 spatial thinking and STEM education: when, why, and how? Psychol. Learn. Motiv. Adv. Res. Theor. 57, 147 (2012)CrossRefGoogle Scholar
  16. 16.
    Uttal, D.H., Meadow, N.G., Tipton, E., Hand, L.L., Alden, A.R., Warren, C., Newcombe, N.S.: The malleability of spatial skills: a meta-analysis of training studies. Psychol. Bull. 139, 352–402 (2013)CrossRefGoogle Scholar
  17. 17.
    Shapiro, L.: Embodied Cognition. Routledge, London (2010)Google Scholar
  18. 18.
    Gersmehl, P.J., Gersmehl, C.A.: Spatial thinking by young children: neurologic evidence for early development and educability. J. Geogr. 106(5), 181–191 (2007)CrossRefGoogle Scholar
  19. 19.
    Nagy-Kondor, R.: Spatial ability: measurement and development. In: Visual-Spatial Ability in STEM Education, pp. 35–58. Springer International Publishing (2017)Google Scholar
  20. 20.
    Linn, M.C., Petersen, A.C.: Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 56, 1479–1498 (1985)CrossRefGoogle Scholar
  21. 21.
    Williams, C.B., Gero, J., Lee, Y., Paretti, M.: Exploring spatial reasoning ability and design cognition in undergraduate engineering students. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 669–676. American Society of Mechanical Engineers, January 2010Google Scholar
  22. 22.
    Khan, S., Francis, K., Davis, B.: Accumulation of experience in a vast number of cases: enactivism as a fit framework for the study of spatial reasoning in mathematics education. ZDM 47(2), 269–279 (2015)CrossRefGoogle Scholar
  23. 23.
    Bruce, C.D., Moss, J., Sinclair, N., Whiteley, W., Okamoto, Y., McGarvey, L., Davis, B.: Early years spatial reasoning: learning, teaching, and research implications. In: Workshop Presented at the NCTM Research Presession: Linking Research and Practice, Denver, CO. (2013)Google Scholar
  24. 24.
    Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science 171(3972), 701–703 (1971)CrossRefGoogle Scholar
  25. 25.
    Metzler, J., Shepard, R.N.: Transformational studies of the internal representation of three-dimensional objects (1974)Google Scholar
  26. 26.
    Di Paolo, E.A., Thompson, E.: The enactive approach. In: Shapiro, L. (ed.) The Routledge Handbook of Embodied Cognition, pp. 68–78. Routledge, New York (2014)Google Scholar
  27. 27.
    Bishop, J.M., Martin, A.O. (eds.): Contemporary Sensorimotor Theory. Springer, Heidelberg (2014)Google Scholar
  28. 28.
    Smith, L.B.: Cognition as a dynamic system: principles from embodiment. Dev. Rev. 25(3–4), 278–298 (2005)CrossRefGoogle Scholar
  29. 29.
    Määttänen, P.: Experience and Embodied Cognition in Pragmatism, vol. 18. Springer, Cham (2015)Google Scholar
  30. 30.
    Crifaci, G., Città, G., Raso, R., Gentile, M., Allegra, M.: Neuroeducation in the light of embodied cognition: an innovative perspective. In: Proceedings of the 2015 International Conference on Education and Modern Educational Technologies (EMET 2015), pp. 21–24 (2015)Google Scholar
  31. 31.
    Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Motor Skills 47(2), 599–604 (1978)CrossRefGoogle Scholar
  32. 32.
    CEEB Special Aptitude Test in Spatial Relations, developed by the College Entrance Examination Board, USA (1939)Google Scholar
  33. 33.
    Osterrieth, P.A.: Le test de copie d’une figure complexe. Arch. Psychol. 30, 206–356 (1944)Google Scholar
  34. 34.
    Augello, A., Infantino, I., Manfrè, A., Pilato, G., Vella, F., Chella, A.: Creation and cognition for humanoid live dancing. Robot. Auton. Syst. 86, 128–137 (2016)CrossRefGoogle Scholar
  35. 35.
    Augello, A., Infantino, I., Maniscalco, U., Pilato, G., Vella, F.: The effects of soft somatosensory system on the execution of robotic tasks. IEEE Robot. Comput. (2017)Google Scholar
  36. 36.
  37. 37.
    Robotics Operating System. http://wiki.ros.org/it
  38. 38.
    Keren, G., Ben-David, A., Fridin, M.: Kindergarten assistive robotics (KAR) as a tool for spatial cognition development in pre-school education. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Agnese Augello
    • 1
    Email author
  • Giuseppe Città
    • 2
  • Manuel Gentile
    • 2
  • Ignazio Infantino
    • 1
  • Dario La Guardia
    • 2
  • Adriano Manfré
    • 1
  • Umberto Maniscalco
    • 1
  • Simona Ottaviano
    • 2
  • Giovanni Pilato
    • 1
  • Filippo Vella
    • 1
  • Mario Allegra
    • 2
  1. 1.ICAR - National Research Council of ItalyPalermoItaly
  2. 2.ITD - National Research Council of ItalyPalermoItaly

Personalised recommendations