An Ensemble Classifiers Approach for Emotion Classification

  • Mohamed Walid ChaibiEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 76)


Decoding the emotional state of a person has a variety of applications. It could be used in human-computer interaction (HCI) or like follow-ups in the therapeutic techniques. Recently, emotion recognition is one of topic that researchers are most interested in and until now, there are several studies relating to the emotion using devices and techniques. To recognize human emotions, various physiological signals have been widely used. In this research, we propose a novel approach for the emotion classification using several physiological signals to classify eight emotions according to the Clynes sentograph protocol of Manfred Clynes. The study has two main objectives. On the one hand a comparative study to choose the best classifiers that addresses the emotion classification problem. And On the other hand to develop an ensemble classifiers approach.


Ensemble classifiers Emotion classification Physiological signals 


  1. 1.
    Schacter, D.: Psychology, 2nd edn, p. 310. Worth Publishers, New York (2011). ISBNGoogle Scholar
  2. 2.
    Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)CrossRefGoogle Scholar
  3. 3.
    Izard, C.: Human Emotions. Plenum Press, New York (1977/2001)Google Scholar
  4. 4.
    Ortony, A., Turner, T.J.: What’s basic about basic emotions? Psychol. Rev. 97, 315–331 (1990)CrossRefGoogle Scholar
  5. 5.
    Darwin, C., Ekman, P., Prodger, P.: The Expression of the Emotions in Man and Animals. Oxford University Press, Oxford (1998)Google Scholar
  6. 6.
    Cannon, W.B.: The james-lange theory of emotions: A critical examination and an alternative theory. Am. J. Psychol. 39, 106–124 (1927)CrossRefGoogle Scholar
  7. 7.
    Damasio, A., Sutherland, S.: Descartes’ error: Emotion, reason and the human brain. Nature 372, 287–287 (1994)CrossRefGoogle Scholar
  8. 8.
    Plutchik, R.: The Emotions. University Press of America, New York (1991)Google Scholar
  9. 9.
    Lisa, F.: Valence focus and arousal focus: Individual differences in the structure of affective experience. J. Pers. Soc. Psychol. 69(1), 153–166 (1995)CrossRefGoogle Scholar
  10. 10.
    Clynes, M.: Sentography: Dynamic forms of communication of emotion and qualities. Comput. Biol. Med. 3, 119–130 (1972)CrossRefGoogle Scholar
  11. 11.
    Li, W., Xu, H.: Text-based emotion classification using emotion cause extraction. Expert Syst. Appl. 41(4), 1742–1749 (2014)CrossRefGoogle Scholar
  12. 12.
    Sheng, H.K., Mohamed, A.: 3D HMM-based facial expression recognition using histogram of oriented optical flow (2015)Google Scholar
  13. 13.
    Hongying, M., Nadia, B., Yangdong, D., Jinkuang, C.: Time-delay neural network for continuous emotional dimension prediction from (2015)Google Scholar
  14. 14.
    Muthusamy, H., Polat, K., Yaacob, S.: Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals. Math. Probl. Eng. 2015, 13 (2015). doi: 10.1155/2015/394083. Article ID 394083CrossRefGoogle Scholar
  15. 15.
    Bhaskar, J., Sruthi, K., Nedungadi, P.: Hybrid approach for emotion classification of audio conversation based on text and speech mining. Procedia Comput. Sci. 46, 635–643 (2015)CrossRefGoogle Scholar
  16. 16.
    Park, B.J., Jang, E.H., Kim, S.H., Huh, C., Chung, M.A.: The design of fuzzy C-means clustering based neural networks for emotion classification. In IFSA World Congress and NAFIPS Annual Meeting, pp. 413–417 (2013)Google Scholar
  17. 17.
    Zheng, L., Zhu, Y., Peng, Y., Lu, L.: EEG-based emotion classification using deep belief networks. In: IEEE International Conference on Multimedia and Expo (2014)Google Scholar
  18. 18.
    Verma, G.K., Tiwary, U.S.: Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102, 162–172 (2014)CrossRefGoogle Scholar
  19. 19.
    Lokannavar, S., Lahane, P., Gangurde, A., Chidre, P.: Emotion recognition using EEG signals. Emotion 4(5) (2015)Google Scholar
  20. 20.
    Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dietterich, T.G.: Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems, pp. 1–15 (2000)Google Scholar
  22. 22.
    Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)zbMATHGoogle Scholar
  23. 23.
    Vaish, A., Kumari, P.: A comparative study on machine learning algorithms in emotion state recognition using ECG. In: Proceedings of the Second International Conference on Soft Computing for Problem Solving (2014)Google Scholar
  24. 24.
    Mano, L.Y., Giancristofaro, G.T., Faical, B.S., Libralon, G.L., Pessin, G., Gomes, P.H., Ueyama, J.: Exploiting the use of ensemble classifiers to enhance the precision of user’s emotion classification. In: International Conference on Engineering Applications Of Neural Networks (INNS) (2015)Google Scholar
  25. 25.
    Sun, Y., Wen, G.: Ensemble softmax regression model for speech emotion recognition. Multimed.Tools Appl. 76(6), 1–24 (2016)Google Scholar
  26. 26.
    Perikos, I., Hatzilygeroudis, I.: Recognizing emotions in text using ensemble of classifiers. Eng. Appl. Artif. Intell. 51, 191–201 (2016)CrossRefGoogle Scholar
  27. 27.
    Rani, P.I., Muneeswaran, K.: Recognize the facial emotion in video sequences using eye and mouth temporal gabor features. Multim. Tools Appl. 76(7), 1–24 (2016)Google Scholar
  28. 28.
    Jain, S., Durgesh, M., Ramesh, T.: Facial expression recognition using variants of LBP and classifier fusion. In: Proceedings of International Conference on ICT for Sustainable Development, pp. 725–732 (2016)Google Scholar
  29. 29.
    Neoh, S.C., Mistry, K., Zhang, L., Lim, C.P., Fielding, B.: A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition (2016)Google Scholar
  30. 30.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  32. 32.
    Langley, P., Iba, W., Thompson, K.: An analysis of bayesian classifiers. In: National Conference on Artificial Intelligence, pp. 223–228 (1992)Google Scholar
  33. 33.
    Cao, Y., Wu, J.: Projective ART for clustering data sets in high dimensional spaces. Neural Netw. 15(1), 105–120 (2002)CrossRefGoogle Scholar
  34. 34.
    Haijian, S.: Best-first decision tree learning. Hamilton, NZ (2007)Google Scholar
  35. 35.
    Gaines, B.R., Compton, J.P.: Induction of ripple-down rules applied to modeling large databases. Intell. Inf. Syst. 5(3), 211–228 (1995)CrossRefGoogle Scholar
  36. 36.
    Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59, 161 (2005)CrossRefzbMATHGoogle Scholar
  37. 37.
    Cleary, J.G., Trigg, L.E.: K*: An instance-based learner using an entropic distance measure. In: 12th International Conference on Machine Learning (1995)Google Scholar
  38. 38.
    Healey, J., Picard, R.W.: Eight-emotion sentics data (2002). Retrieved 12 Aug 2016
  39. 39.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.High Institute of Management of Tunis (ISG-Tunis)TunisTunisia

Personalised recommendations