Hotho, A., Nurnberger, A., Paaß, G.: A brief survey of text mining. LDV Forum-GLDV J. Comput. Linguist. Lang. Technol. 20, 19–62 (2005)
Google Scholar
Tan, A.: Text mining: the state of the art and the challenges concept-based. In: Proceedings of the PAKDD 1999 Workshop on Knowledge Discovery from Advanced Databases, pp. 65–70 (1999)
Google Scholar
Chen, K.C.: Text Mining e-complaints data from e-auction store. J. Bus. Econ. Res. 7(5), 15–24 (2009)
Google Scholar
Mohammed, F.S., Zakaria, L., Omar, N., Albared, M.Y.: Automatic kurdish sorani text categorization using N-gram based model. In: 2012 International Conference on Computer & Information Science (ICCIS), 12 Jun 2012, vol. 1, pp. 392–395. IEEE (2012)
Google Scholar
Wahbeh, A., Al-Kabi, M., Al-Radaideh, Q., Al-Shawakfa, E., Alsmadi, I.: The effect of stemming on arabic text classification: an empirical study. Int. J. Inf. Retrieval Res. 1(3), 54–70 (2011)
CrossRef
Google Scholar
Mohammad, A.H., Alwada’n, T., Al-Momani, O.: Arabic text categorization using support vector machine, Naïve Bayes and neural network. GSTF J. Comput. (JoC) 5(1), 108–115 (2016)
CrossRef
Google Scholar
Mohsen, A.M., Hassan, H.A., Idrees, A.M.: Documents emotions classification model based on tf-idf weighting measure. World Acad. Sci. Eng. Technol. Int. J. Comput. Electric. Automat. Control Inf. Eng. 3(1), 1795 (2016)
Google Scholar
Hmeidi, I., Al-Ayyoub, M., Abdulla, N.A., Almodawar, A.A., Abooraig, R., Mahyoub, N.A.: Automatic Arabic text categorization: a comprehensive comparative study. J. Inf. Sci. 41(1), 114–124 (2015)
CrossRef
Google Scholar
Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 4 August 2001, vol. 3, no. 22, pp. 41–46. IBM, New York (2001)
Google Scholar
Sharma, R., Gulati, N.: Improving the accuracy and reducing the redundancy in data mining. Int. J. Eng. Sci., 45–75 (2016)
Google Scholar
Last, M., Markov, A., Kandel, A.: Multi-lingual detection of web terrorist content. In: Chen, H. (ed.) WISI. LNCS, pp. 16–30. Springer (2006)
Google Scholar
Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques, vol. 31, pp. 249–268 (2007)
Google Scholar
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
MATH
Google Scholar
Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)
CrossRef
Google Scholar
Esmaili, K.S., Eliassi, D., Salavati, S., Aliabadi, P., Mohammadi, A., Yosefi, S., Hakimi, S.: Building a test collection for Sorani Kurdish. In: Proceedings of the 10th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2013), Ifrane, Morocco, 27–30 May 2013. IEEE, New York (2013)
Google Scholar
Hassani, H., Medjedovic, D.: Automatic kurdish dialects identification. Comput. Sci. Inf. Technol., 61 (2016)
Google Scholar
Mustafa, A.M., Rashid, T.A.: Kurdish stemmer pre-processing steps for improving information retrieval. J. Inf. Sci., 1–14 (2017). doi: 10.1177/0165551510000000, sagepub.co.uk/journalsPermissions.nav, jis.sagepub.com
Szymański, J.: Comparative analysis of text representation methods using classification. Cybern. Syst. 45(2), 180–199 (2014)
Google Scholar
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)
CrossRef
MATH
Google Scholar
Patra, A., Singh, D.: A survey report on text classification with different term weighing methods and comparison between classification algorithms. Int. J. Comput. Appl. 75(7) (2013)
Google Scholar