Skip to main content

Estimating 3D Ventricular Shape From 2D Echocardiography: Feasibility and Effect of Noise

  • 1481 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 10263)

Abstract

Many cardiac diseases are associated with changes in ventricular shape. However, in daily practice, the heart is mostly assessed by 2D echocardiography only. While 3D techniques are available, they are rarely used. In this paper we analyze to which extent it is possible to obtain the 3D shape of a left ventricle (LV) using measurements from 2D echocardiography. First, we investigate this using synthetic datasets, and afterwards, we illustrate it in clinical 2D echocardiography measurements with corresponding 3D meshes obtained using 3D echocardiography. We demonstrate that standard measurements taken in 2D allow quantifying only the ellipsoidal shape of the ventricle, and that capturing other shape features require either additional geometrical measurements or clinical information related to shape remodelling. We show that noise in the measurements is the primary cause for poor association between the measurements and the LV shape features and that an estimated \(10\%\) level of noise on the 2D measurements limits the recoverability of shape. Finally we show that clinical variables relating to the clinical history can substitute the lack of geometric measurements, thus providing alternatives for shape assessment in daily practice.

Keywords

  • LV shape
  • LV measurements
  • Echocardiography
  • Shape prediction
  • LV measurement accuracy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59448-4_43
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-59448-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Konstam, M.A., Kramer, D.G., Patel, A.R., Maron, M.S., Udelson, J.E.: Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc. Imaging 4(1), 98–108 (2011)

    CrossRef  Google Scholar 

  2. Di Donato, M., Castelvecchio, S., Kukulski, T., Bussadori, C., Giacomazzi, F., Frigiola, A., Menicanti, L.: Surgical ventricular restoration: left ventricular shape influence on cardiac function, clinical status, and survival. Ann. Thorac. Surg. 87, 455–461 (2009)

    CrossRef  Google Scholar 

  3. Ye, D.H., Desjardins, B., Hamm, J., Litt, H., Pohl, K.M.: Regional manifold learning for disease classification. IEEE Trans. Med. Imaging 33(6), 1236–1247 (2014)

    CrossRef  Google Scholar 

  4. Crispi, F., Bijnens, B., Figueras, F., Bartrons, J., Eixarch, E., Le Noble, F., Ahmed, A., Gratacós, E.: Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 121(22), 2427–2436 (2010)

    CrossRef  Google Scholar 

  5. Sarvari, S.I., Rodriguez-Lopez, M., Nuñez-Garcia, M., Sitges, M., Sepulveda-Martinez, A., Camara, O., Butakoff, C., Gratacos, E., Bijnens, B., Crispi, F.: Persistence of cardiac remodeling in Preadolescents with fetal growth restriction. Circ. Cardiovasc. Imaging 10(1) (2017)

    Google Scholar 

  6. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11) (2013). e245

    Google Scholar 

  7. Blanc, R., Seiler, C., Székely, G., Nolte, L.P., Reyes, M.: Statistical model based shape prediction from a combination of direct observations and various surrogates: application to orthopaedic research. Med. Image Anal. 16(6), 1156–1166 (2012)

    CrossRef  Google Scholar 

  8. Lancellotti, P., Cosyns, B.: The EACVI Echo Handbook. The European Society of Cardiology Textbooks Series. Oxford University Press, Oxford (2015)

    CrossRef  Google Scholar 

  9. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  10. D’hooge, J., Barbosa, D., Gao, H., Claus, P., Prater, D., Hamilton, J., Lysyansky, P., Abe, Y., Ito, Y., Houle, H., Pedri, S., Baumann, R., Thomas, J., Badano, L.P.: Two-dimensional speckle tracking echocardiography standardization efforts based on synthetic ultrasound data. Eur. Heart J. Cardiovasc. Imaging 17, 693–701 (2016)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Spanish Ministry of Economy and Competitiveness (grant TIN2014-52923-R; Maria de Maeztu Units of Excellence Programme - MDM-2015-0502), FEDER and the European Union Horizon 2020 Programme for Research and Innovation, under grant agreement No. 642676 (CardioFunXion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bernardino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bernardino, G. et al. (2017). Estimating 3D Ventricular Shape From 2D Echocardiography: Feasibility and Effect of Noise. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)