Feasibility of the Estimation of Myocardial Stiffness with Reduced 2D Deformation Data

  • Anastasia NasopoulouEmail author
  • David A. Nordsletten
  • Steven A. Niederer
  • Pablo Lamata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10263)


Myocardial stiffness is a useful diagnostic and prognostic biomarker, but only accessible through indirect surrogates. Computational 3D cardiac models, through the process of personalization, can estimate the material parameters of the ventricles, allowing the estimation of stiffness and potentially improving clinical decisions. The availability of detailed 3D cardiac imaging data, which are not routinely available for the conventional cardiologist, is nevertheless required to constrain these models and extract a unique set of parameters. In this work we propose a strategy to provide the same ability to identify the material parameters, but from 2D observations that are obtainable in the clinic (echocardiography). The solution combines the adaptation of an energy-based cost function, and the estimation of the out of plane deformation based on an incompressibility assumption. In-silico results, with an analysis of the sensitivity to errors in the deformation, fibre orientation, and pressure data, demonstrate the feasibility of the approach.


Cardiac mechanics Myocardial stiffness Energy-based cost function Parameter estimation 2D images 


  1. 1.
    Burkhoff, D.: Mortality in heart failure with preserved ejection fraction: an unacceptably high rate. Eur. Heart J. 33(14), 1718–1720 (2012)CrossRefGoogle Scholar
  2. 2.
    Westermann, D., Kasner, M., Steendijk, P., Spillmann, F., Riad, A., Weitmann, K., Hoffmann, W., Poller, W., Pauschinger, M., Schultheiss, H.-P., Tschöpe, C.: Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117(16), 2051–2060 (2008)CrossRefGoogle Scholar
  3. 3.
    Gao, H., Li, W.G., Cai, L., Berry, C., Luo, X.Y.: Parameter estimation in a Holzapfel-Ogden law for healthy myocardium. J. Eng. Math. 95(1), 231–248 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Nasopoulou, A., Shetty, A., Lee, J., Nordsletten, D., Rinaldi, C.A., Lamata, P., Niederer, S.: Improved identifiability of myocardial material parameters by an energy-based cost function. Biomech. Model. Mechanobiol. (2017)Google Scholar
  5. 5.
    Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1), 42–55 (1991)CrossRefGoogle Scholar
  6. 6.
    Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)CrossRefGoogle Scholar
  7. 7.
    Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3), 339–347 (1969)CrossRefGoogle Scholar
  8. 8.
    Hadjicharalambous, M., Chabiniok, R., Asner, L., Sammut, E., Wong, J., Carr-White, G., Lee, J., Razavi, R., Smith, N., Nordsletten, D.: Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI. Biomech. Model. Mechanobiol. 14(4), 807–828 (2014)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Cookson, A., Roy, I., Kerfoot, E., Asner, L., Vigueras, G., Sochi, T., Deparis, S., Michler, C., Smith, N.P., Nordsletten, D.A.: Multiphysics computational modeling in CHeart. SIAM J. Sci. Comput. 38(3), C150–C178 (2016)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hadjicharalambous, M., Lee, J., Smith, N.P., Nordsletten, D.A.: A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics. Comput. Methods Appl. Mech. Eng. 274(100), 213–236 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals. Elsevier, Amsterdam (2010)zbMATHGoogle Scholar
  12. 12.
    Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, New York (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–21 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anastasia Nasopoulou
    • 1
    Email author
  • David A. Nordsletten
    • 1
  • Steven A. Niederer
    • 1
  • Pablo Lamata
    • 1
  1. 1.Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical EngineeringKing’s College LondonLondonUK

Personalised recommendations