Skip to main content

Smoothed Particle Hydrodynamics for Electrophysiological Modeling: An Alternative to Finite Element Methods

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Abstract

Finite element methods (FEM) are generally used in cardiac 3D-electromechanical modeling. For FEM modeling, a step of a suitable mesh construction is required, which is non-trivial and time-consuming for complex geometries. A meshless method is proposed to avoid meshing. The smoothed particle hydrodynamics (SPH) method was used to solve an electrophysiological model on a left ventricle extracted from medical imaging straightforwardly, without any need of a complex mesh. The proposed method was compared against FEM in the same left-ventricular model. Both FEM and SPH methods provide similar solutions of the models in terms of depolarization times. Main differences were up to 10.9% at the apex. Finally, a pathological application of SPH is shown on the same ventricular geometry with an added scar on the heart wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cabrera Lozoya, R.: Radiofrequency ablation planning for cardiac arrhythmia treatment using modeling and machine learning approaches. Theses, Université Nice Sophia Antipolis, September 2015

    Google Scholar 

  2. Campos, J.O., Oliveira, R.S., dos Santos, R.W., Rocha, B.M.: Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs. J. Comput. Appl. Math. 295, 70–82 (2016). VIII Pan-American Workshop in Applied and Computational Mathematics

    Article  MathSciNet  MATH  Google Scholar 

  3. Chabiniok, R., Wang, V.Y., et al.: Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2), 20150083 (2016)

    Article  Google Scholar 

  4. Chen, J.K., Beraun, J.E., Carney, T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Numer. Method Eng. 46(2), 231–252 (1999)

    Article  MATH  Google Scholar 

  5. Chinchapatnam, P., Rhode, K., Ginks, M., Nair, P., Razavi, R., Arridge, S., Sermesant, M.: Voxel based adaptive meshless method for cardiac electrophysiology simulation. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 182–190. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01932-6_20

    Chapter  Google Scholar 

  6. Marchesseau, S., Delingette, H., et al.: Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech. Model. Mechanobiol. 12(4), 815–831 (2013)

    Article  Google Scholar 

  7. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Article  MATH  Google Scholar 

  8. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nishiura, D., Furuichi, M., Sakaguchi, H.: Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing. Comput. Phys. Commun. 194, 18–32 (2013)

    Article  Google Scholar 

  10. Smith, N., de Vecchi, A., et al.: euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3), 349–364 (2011)

    Article  Google Scholar 

  11. Soto-Iglesias, D., Butakoff, C., et al.: Integration of electro-anatomical and imaging data of the left ventricle: an evaluation framework. Med. Image Anal. 32, 131–144 (2016)

    Article  Google Scholar 

  12. Streeter, D.D., Spotnitz, H.M., et al.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3), 339–347 (1969)

    Article  Google Scholar 

  13. Talbot, H., Marchesseau, S., et al.: Towards an interactive electromechanical model of the heart. Interface Focus 3(2) 2013

    Google Scholar 

  14. Yipintsoi, T., Scanlon, P.D., et al.: Density and water content of dog ventricular myocardium. Proc. Soc. Exp. Biol. Med. 141(3), 1032–1035 (1972)

    Article  Google Scholar 

  15. Zhang, H., Wang, L., Hunter, P.J., Pengcheng, S.: Meshfree framework for image-derived modelling. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1449–1452. IEEE, May 2008

    Google Scholar 

Download references

Acknowledgements

The work is supported by the European Union Horizon 2020 research and innovation programme under grant agreement No 642676 (CardioFunXion). The authors would like to thank the organizers of this project: Bart Bijnens and Mathieu De Craene. Finally, the authors would also like to thank David-Soto Iglesias for all the help provided with the conformal mapping of the endocardium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Èric Lluch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lluch, È. et al. (2017). Smoothed Particle Hydrodynamics for Electrophysiological Modeling: An Alternative to Finite Element Methods. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics