Abstract
Biomechanical surgery simulation can provide surgeons with useful ancillary information for intervention planning, diagnosis and therapy. The simulation therefore most importantly needs to be patient-specific, surgical knowledge-based and comprehensive in terms of the underlying simulation model and the patient’s data. Moreover, the simulation setup and execution should be largely automated and integrated into the surgical treatment workflow. However, this still rarely holds and simulation-based surgery support is not yet commonly established in the clinic. In this work, we address this problem in the context of cardiac surgery, and present the setup and results of a prototypic cognition-guided, patient-specific FEM-based cardiac surgery simulation system. We have designed a semantic data infrastructure and implemented cognitive software components that autonomously interact with the medical data via a common ontology. Using this setup, we anable the creation of knowledge-based, patient-specific surgery simulation scenarios for mitral valve reconstruction surgery, that are executed by means of the FEM simulation software HiFlow3. The obtained simulation results are provided to the surgeon in order to support surgical decision making.
Keywords
- Cognition-guidance
- Surgical information processing
- FEM surgery simulation
- Biomechanical modeling and simulation workflow
- Cardiac surgery
- Mitral valve reconstruction
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)
Berners-Lee, T.: Linked Data. W3C. Design Issues, 27 July 2006
Biem, A., Butrico, M., Feblowitz, M., Klinger, T., Malitsky, Y., Ng, K., Perer, A., Reddy, C., Riabov, A., Samulowitz, H., Sow, D., Tesauro, G., Turaga, D.: Towards cognitive automation of data science. In: Proceedings of AAAI Conference on Artificial Intelligence 2015 (2015)
Carpentier, A.: Cardiac valve surgery the ‘French’ correction. J. Thorac. Cardiovasc. Surg. 86, 323–337 (1983)
Chandran, K., Kim, H.: Computational mitral valve evaluation and potential clinical applications. Ann. Biomed. Eng. 43(6), 1348–1362 (2014)
Choi, A., Rim, Y., Mun, J.S., Kim, H.: A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Biomed. Mater. Eng. 24(1), 341–347 (2014)
Engelhardt, S., Lichtenberg, N., Al-Maisary, S., Simone, R., Rauch, H., Roggenbach, J., Müller, S., Karck, M., Meinzer, H.-P., Wolf, I.: Towards automatic assessment of the mitral valve coaptation zone from 4D ultrasound. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 137–145. Springer, Cham (2015). doi:10.1007/978-3-319-20309-6_16
Fedak, P.W.M., McCarthy, P.M., Bonow, R.O.: Evolving concepts and technologies in mitral valve repair. Circulation 117(7), 963–974 (2008)
Fetzer, A., Metzger, J., Katic, D., Mrz, K., Wagner, M., Philipp, P., Engelhardt, S., Weller, T., Zelzer, S., Franz, A.M., Schoch, N., Heuveline, V., Maleshkova, M., Rettinger, A., Speidel, S., Wolf, I., Kenngott, H., Mehrabi, A., Mller, B., Maier-Hein, L., Meinzer, H.-P., Nolden, M.: Towards an open-source semantic data infrastructure for integrating clinical and scientific data in cognition-guided surgery. In: Proceedings of SPIE 9789 Medical Imaging 2016, vol. 9789, pp. 978900–978908 (2016)
Augustin, W., Baumann, M., Gengenbach, T., Hahn, T., Helfrich-Schkarbanenko, A., Heuveline, V., Ketelaer, E., Lukarski, D., Nestler, A., Ritterbusch, S., Ronnas, S., Schick, M., Schmidtobreick, M., Subramanian, C., Weiss, J.-P., Wilhelm, F., Wlotzka, M.: HiFlow3- a hardware-aware parallel finite element package. In: Brunst, H., Müller, M., Nagel, W., Resch, M. (eds.) Tools for High Performance Computing, pp. 139–151. Springer, Heidelberg (2012)
Mansi, T., Voigt, I., Georgescu, B., Zheng, X., Mengue, E.A., Hackl, M., Ionasec, R.I., Noack, T., Seeburger, J., Comaniciu, D.: An integrated framework for finite element modeling of mitral valve biomechanics from medical images. J. Med. Image. Anal. 16(7), 1330–1346 (2012)
Morgan, A.E., Pantoja, J.L., Weinsaft, J., Grossi, E., Guccione, J.M., Ge, L., Ratcliffe, M.: Finite Element modeling of mitral valve repair. J. Biomech. Eng. 138(2), 021009 (2016)
Philipp, P., Maleshkova, M., Katic, D., Weber, C., Goetz, M., Rettinger, A., Speidel, S., Kaempgen, B., Nolden, M., Wekerle, A.-L., Dillmann, R., Kenngott, H., Mueller, B., Studer, R.: Toward cognitive pipelines of medical assistance algorithms. Int. J. CARS 11(9), 1743–1753 (2015)
Prot, V., Skallerud, B.: Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. J. Comput. Mech. 43, 353–368 (2009)
Prot, V., Skallerud, B., Sommer, G., Holzapfel, G.A.: On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3, 167–177 (2010)
Schoch, N., Engelhardt, S., De Simone, R., Wolf, I., Heuveline, V.: High performance computing for cognition-guided cardiac surgery: soft tissue simulation for mitral valve reconstruction in knowledge-based surgery assistance. In: Proceedings of High Performance Scientific Computing (HPSC) (2015, in press)
Schoch, N., Engelhardt, S., Zimmermann, N., Speidel, S., de Simone, R., Wolf, I., Heuveline, V.: Integration of a biomechanical simulation for mitral valve reconstruction into a knowledge-based surgery assistance system. In: Proceedings of SPIE 9415 Medical Imaging 2015, vol. 9415, pp. 941502–941502-7 (2015)
Schoch, N., Kissler, F., Stoll, M., Engelhardt, S., de Simone, R., Wolf, I., Bendl, R., Heuveline, V.: Comprehensive patient-specific information preprocessing for cardiac surgery simulations. Int. J. CARS 11(6), 1051–1059 (2016). (Special Issue IPCAI)
Schoch, N., Philipp, P., Weller, T., Engelhardt, S., Volovyk, M., Fetzer, A., Nolden, M., de Simone, R., Wolf, I., Maleshkova, M., Rettinger, A., Studer, R., Heuveline, V.: Cognitive tools pipeline for assistance of mitral valve surgery. In: Proceedings of SPIE 9786 Medical Imaging 2016, 9786: 978603–978603-8 (2016)
Schoch, N., Speidel, S., Sure-Vetter, Y., Heuveline, V.: Towards semantic simulation for patient-specific surgery assistance. In: Online-Proceedings of Surgical Data Science 2016 (2016)
Suwelack, S., Stoll, M., Schalck, S., Schoch, N., Dillmann, R., Berndl, R., Heuveline, V., Speidel, S.: The medical simulation markup language - simplifying the biomechanical modeling workflow. J. Stud. Health. Techn. Inf. 196, 394–400 (2014)
Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., Sotiropoulos, F.: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013)
Zhang, F., Kanik, J., Mansi, T., Voigt, I., Sharma, P., Ionasec, R.I., Subrahmanyan, L., Lin, B.A., Sugeng, L., Yuh, D., Comaniciu, D., Duncan, J.: Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation. J. Med. Image Anal. 35, 599–609 (2017)
Acknowledgments
This work was carried out with the support of the German Research Foundation (DFG) in the framework of the Collaborative Research Center SFB/TRR 125 ‘Cognition-Guided Surgery’. We particularly thank our colleagues Sandy Engelhardt, Ivo Wolf (Institute of Informatics, University of Applied Science, Mannheim, Germany) and Raffaele de Simone (Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany) in the context of cardiac surgery and medical imaging, for the fruitful cooperation and for valuable explanations and discussions concerning our work. Also, we thank Patrick Philipp and York Sure-Vetter (Institute of Applied Informatics and Formal Description Methods (AIFB), Karlsruhe Institute of Technology, Karlsruhe, Germany) for the help and experience with respect to the cognitive semantic software and data infrastructure. We performed all simulations on the bwUniCluster, funded by the Ministry of Science, Research and the Arts Baden-Wuerttemberg and the Universities of the State of Baden-Wuerttemberg, Germany, within the framework program bwHPC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Schoch, N., Heuveline, V. (2017). Towards Cognition-Guided Patient-Specific FEM-Based Cardiac Surgery Simulation. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-59448-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59447-7
Online ISBN: 978-3-319-59448-4
eBook Packages: Computer ScienceComputer Science (R0)