The Fourier Transforms

  • Lokenath Debnath
  • Firdous A. Shah
Part of the Compact Textbooks in Mathematics book series (CTM)


Historically, Joseph Fourier (1770–1830) first introduced the remarkable idea of expansion of a function in terms of trigonometric series without giving any attention to rigorous mathematical analysis. The integral formulas for the coefficients of the Fourier expansion were already known to Leonhard Euler (1707–1783) and others. In fact, Fourier developed his new idea for finding the solution of heat (or Fourier) equation in terms of Fourier series so that the Fourier series can be used as a practical tool for determining the Fourier series solution of partial differential equations under prescribed boundary conditions. Thus, the Fourier series of a function f(t) defined on the interval (−L, L) is given by


  1. Almeida, L. B. (1994). The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 42, 3084–3091.CrossRefGoogle Scholar
  2. Atakishiyev, N. M., Vicent, L. E., & Wolf, K. B. (1999). Continuous vs discrete fractional Fourier transforms. Journal of Computational and Applied Mathematics, 107, 73–95.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bracewell, R. N. (2000). The Fourier transform and its applications (3rd ed.). Boston: McGraw-Hill.zbMATHGoogle Scholar
  4. Brigham, E. O. (1998). The fast Fourier transform and its applications. New Jersey: Prentice Hall.Google Scholar
  5. Butz, T. (2006). Fourier transformation for pedestrians. Berlin: Springer.zbMATHGoogle Scholar
  6. Candan, C., Kutay, M. A., & Ozaktas, H. M. (2000). The discrete fractional Fourier transform. IEEE Transactions on Signal Processing, 48(5), 1329–1337.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Debnath, L., & Bhatta, D. (2015). Integral transforms and their applications (3rd ed.). Boca Raton/Florida: Chapman and Hall/CRC Press.zbMATHGoogle Scholar
  8. Debnath, L., & Mikusinski, P. (1999). Introduction to Hilbert spaces with applications (2nd ed.). Boston: Academic.zbMATHGoogle Scholar
  9. Duhamel, P., & Vetterli, M. (1990). Fast Fourier transforms: A tutorial review and a state of the art. Signal Processing, 19(4), 259–299.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Heisenberg, W. (1948a). Zur statistischen theori der turbulenz. Zeitschrift für Physik, 124, 628–657.Google Scholar
  11. Heisenberg, W. (1948b). On the theory of statistical and isotropic turbulence. Proceedings of the Royal Society of London, A195, 402–406.Google Scholar
  12. Mendlovic, D., & Ozaktas, H. M. (1993a). Fractional Fourier transforms and their optical implementation-I. Journal of the Optical Society of America A, 10(10), 1875–1881.Google Scholar
  13. Mendlovic, D., & Ozaktas, H. M. (1993b). Fractional Fourier transforms and their optical implementation-II. Journal of the Optical Society of America A. 10(12), 2522–2531.Google Scholar
  14. Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics. Journal of the Institute of Mathematics and its Applications, 25, 241–265.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Ozaktas, H. M., Kutay, M. A., & Candan, C. (2010). Fractional Fourier transform. In A. D. Poularikas (Ed.), Transforms and applications handbook (pp. 632–659). Boca Raton: CRC Press.Google Scholar
  16. Ozaktas, H. M., Zalevsky, Z., & Kutay, M. A. (2000). The fractional Fourier transform with applications in optics and signal processing. New York: Wiley.Google Scholar
  17. Ran, T., Bing, D., & Yue, W. (2006). Research progress of the fractional Fourier transform in signal processing. Science in China: Series F, 49, 1–25.MathSciNetzbMATHGoogle Scholar
  18. Rao, K. R., Kim, D. N., & Hwang, J. J. (2010). Fast Fourier transform: algorithms and applications. New York: Springer.CrossRefzbMATHGoogle Scholar
  19. Sejdić, E., Djurović, I., & Stanković, L. (2011). Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Processing, 91, 1351–1369.CrossRefzbMATHGoogle Scholar
  20. Sundararajan, D. (2001). The discrete Fourier transform. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  21. Tao, R., Deng, B., & Wang, Y. (2009). Fractional Fourier transform and its applications. Beijing: Tsinghua University Press.Google Scholar
  22. Wong, M. W. (2010). Discrete Fourier analysis. Boston: Birkhäuser.Google Scholar
  23. Zayed, A. I. (1998). Fractional Fourier transform of generalized functions. Integral Transforms and Special Functions, 7(3), 299–312.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lokenath Debnath
    • 1
  • Firdous A. Shah
    • 2
  1. 1.School of Mathematical and Statistical SciencesUniversity of Texas – Rio Grande ValleyEdinburgUSA
  2. 2.Department of MathematicsUniversity of KashmirAnantnagIndia

Personalised recommendations