Skip to main content

A Review of Advances in Extreme Learning Machine Techniques and Its Applications

  • Conference paper
  • First Online:
Recent Trends in Information and Communication Technology (IRICT 2017)

Abstract

Feedforward neural networks (FFNN) has been used for machine learning researches, and it really has a wide acceptance. It was noted in the recent time that feedforward neural network is far slower than required. This has created a serious bottleneck in its applications. Extreme Learning Machines (ELM) had been proposed as alternative learning algorithm to FFNN, which is characterized by single-hidden layer feedforward neural networks (SLFN). It randomly chooses hidden nodes and determines their output weight analytically. This paper review is to provide a roadmap for ELM as an efficient research tool in machine learning with the aim of finding research gap into further study. It was discovered through this study that research publications in ELM continues to grow yearly from 16.20% in 2013 to 40.83% in 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE International Joint Conference Neural Networks, vol. 2, pp. 985–990 (2004). doi:10.1109/IJCNN.2004.1380068

  2. Bin, H.G.: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cognit. Comput. 7, 263–278 (2015). doi:10.1007/s12559-015-9333-0

    Article  Google Scholar 

  3. Huang, G., Bin, H.G., Song, S., You, K.: Trends in extreme learning machines: a review. Neural Networks 61, 32–48 (2015). doi:10.1016/j.neunet.2014.10.001

    Article  MATH  Google Scholar 

  4. Lazarevska, L.: Wind speed prediction with extreme learning machine, pp. 154–159 (2016)

    Google Scholar 

  5. Yang, Y., Wu, Q.M.J., Member, S.: Extreme learning machine with subnetwork hidden nodes for regression and classification. IEEE Trans. Cybern. 46, 2885–2898 (2016)

    Article  Google Scholar 

  6. Balasundaram, S., Gupta, D.: Knowledge-based extreme learning machines. Neural Comput. Appl. 27, 1629–1641 (2016). doi:10.1007/s00521-015-1961-5

    Article  Google Scholar 

  7. Musikawan, P., Sunat, K., Chiewchanwattana, S., et al.: Improved convex incremental extreme learning machine based on ridgelet and PSO algorithm (2016)

    Google Scholar 

  8. Deng, W.Y., Bai, Z., Bin, H.G., Zheng, Q.H.: A fast SVD-hidden-nodes based extreme learning machine for large-scale data analytics. Neural Networks 77, 14–28 (2016). doi:10.1016/j.neunet.2015.09.003

    Article  Google Scholar 

  9. Mahmood, S.F., Marhaban, M.H., Rokhani, F.Z., et al.: FASTA-ELM: a fast adaptive shrinkage/thresholding algorithm for extreme learning machine and its application to gender recognition. Neurocomputing (2016). doi:10.1016/j.neucom.2016.09.046

    Google Scholar 

  10. Liu, D., Wu, Y.X., Jiang, H.: FP-ELM: an online sequential learning algorithm for dealing with concept drift. Neurocomputing 207, 322–334 (2015). doi:10.1016/j.neucom.2016.04.043

    Article  Google Scholar 

  11. Iosifidis, A., Tefas, A., Pitas, I.: Graph embedded extreme learning machine. IEEE Trans. Cybern. 46, 311–324 (2016). doi:10.1109/TCYB.2015.2401973

    Article  Google Scholar 

  12. Zhang, J., Ding, S., Zhang, N., Shi, Z.: Incremental extreme learning machine based on deep feature embedded. Int. J. Mach. Learn. Cybern. 7, 111–120 (2016). doi:10.1007/s13042-015-0419-5

    Article  Google Scholar 

  13. Liu, X., Wang, L., Huang, G.-B., et al.: Multiple kernel extreme learning machine. Neurocomputing 149, 253–264 (2015). doi:10.1016/j.neucom.2013.09.072

    Article  Google Scholar 

  14. Yu, W., Zhuang, F., He, Q., Shi, Z.: Learning deep representations via extreme learning machines. Neurocomputing 149, 308–315 (2015). doi:10.1016/j.neucom.2014.03.077

    Article  Google Scholar 

  15. Mao, W., Wang, J., Wang, L.: Online sequential classification of imbalanced data by combining extreme learning machine and improved SMOTE algorithm. In: Proceeding of the International Joint Conference on Neural Networks (2015). doi:10.1109/IJCNN.2015.7280620

  16. Li, S., You, Z., Guo, H., et al.: Inverse-Free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46, 1229–1241 (2016)

    Article  Google Scholar 

  17. Yadav, B., Ch, S., Mathur, S., Adamowski, J.: Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River, Germany. Meas. J. Int. Meas. Confed. 92, 433–445 (2016). doi:10.1016/j.measurement.2016.06.042

    Article  Google Scholar 

  18. Huang, G.-B., Zhu, Q., Siew, C., et al.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006). doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  19. Liu, X., Lin, S., Fang, J., Xu, Z.: Is extreme learning machine feasible? A theoretical assessment (part I). IEEE Trans. Neural Netw. Learn. Syst. 26, 7–20 (2015). doi:10.1109/TNNLS.2014.2335212

    Article  MathSciNet  Google Scholar 

  20. Liu, X., Lin, S., Fang, J., Xu, Z.: Is extreme learning machine feasible? A theoretical assessment (Part II). IEEE Trans. Neural Netw. Learn. Syst. 26, 7–20 (2015). doi:10.1109/TNNLS.2014.2335212

    Article  MathSciNet  Google Scholar 

  21. Cao, J., Lin, Z., Bin, H.G., Liu, N.: Voting based extreme learning machine. Inf. Sci. (Ny) 185, 66–77 (2012). doi:10.1016/j.ins.2011.09.015

    Article  MathSciNet  Google Scholar 

  22. Hu, X., Lin, H., Li, S., Sun, B.: Global and local features based classification for bleed-through removal. Sens. Imaging 17, 9 (2016). doi:10.1007/s11220-016-0134-7

    Article  Google Scholar 

  23. Zhang, J., Feng, L., Wu, B.: Local extreme learning machine: local classification model for shape feature extraction. Neural Comput. Appl. 27, 2095–2105 (2016). doi:10.1007/s00521-015-2008-7

    Article  Google Scholar 

  24. Ebtehaj, I., Bonakdari, H., Shamshirband, S.: Extreme learning machine assessment for estimating sediment transport in open channels. Eng. Comput. 32, 1–14 (2016). doi:10.1007/s00366-016-0446-1

    Article  Google Scholar 

  25. Mundher Yaseen, Z., Jaafar, O., Deo, R.C., et al.: Boost stream-flow forecasting model with extreme learning machine data-driven: a case study in a semi-arid region in Iraq. J. Hydrol. 542, 603–614 (2016). doi:10.1016/j.jhydrol.2016.09.035

    Article  Google Scholar 

  26. Badrzadeh, H., Sarukkalige, R., Jayawardena, A.W.: Hourly runoff forecasting for flood risk management: application of various computational intelligence models. J. Hydrol. (2015). doi:10.1016/j.jhydrol.2015.07.057

    Google Scholar 

  27. Ding, S.F., Xu, X.Z., Nie, R.: Extreme learning machine and its applications. Neural Comput. Appl. 25, 549–556 (2014). doi:10.1007/s00521-013-1522-8

    Article  Google Scholar 

  28. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 513–529 (2012). doi:10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  29. Sakakura, Y.: Extreme Learning Machine (ELM), pp. 1–14 (2013)

    Google Scholar 

  30. Zhang, L., Li, J., Lu, H.: Saliency detection via extreme learning machine. Neurocomputing 218, 103–112 (2016). doi:10.1016/j.neucom.2016.08.066

    Article  Google Scholar 

  31. Oneto, L., Bisio, F., Cambria, E., Anguita, D.: Statistical learning theory and ELM for big social data analysis. IEEE Comput. Intell. Mag. 11, 45–55 (2016). doi:10.1109/MCI.2016.2572540

    Article  Google Scholar 

  32. Wang, H., Xu, Z., Pedrycz, W.: An overview on the roles of fuzzy set techniques in big data processing Trends, challenges and opportunities. Knowledge-Based Syst 118, 1–16 (2016). doi:10.1016/j.knosys.2016.11.008

    Google Scholar 

  33. Bodyanskiy, Y., Vynokurova, O., Pliss I, et al.: Fast learning algorithm for deep evolving GMDH-SVM neural network in data stream mining tasks, pp. 257–262 (2016)

    Google Scholar 

  34. Bin, H.G.: An insight into extreme learning machines: random neurons, random features and kernels. Cognit. Comput. 6, 376–390 (2014). doi:10.1007/s12559-014-9255-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-02G31 & Vot-15H17 and Ministry of Higher Education Malaysia (MOHE) under the Fundamental Research Grant Scheme (FRGS Vot-4F551) for the completion of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Selamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Alade, O.A., Selamat, A., Sallehuddin, R. (2018). A Review of Advances in Extreme Learning Machine Techniques and Its Applications. In: Saeed, F., Gazem, N., Patnaik, S., Saed Balaid, A., Mohammed, F. (eds) Recent Trends in Information and Communication Technology. IRICT 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-59427-9_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59427-9_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59426-2

  • Online ISBN: 978-3-319-59427-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics