Skip to main content

Local Search Based Enhanced Multi-objective Genetic Algorithm of Training Backpropagation Neural Network for Breast Cancer Diagnosis

  • Conference paper
  • First Online:
Recent Trends in Information and Communication Technology (IRICT 2017)

Abstract

Recently, several evolutionary algorithms have been proposed on the basis of preference in literature. Most of multi-objective evolutionary algorithms used NSGA-II due to a good performance in comparison with other multi-objective evolutionary algorithms. Our research is focused on enhancement of a well-known evolutionary algorithm NSGA-II by combining a local search method for solving Breast cancer classification problem based on Backpropagation neural network. The use of local search within the enhanced NSGA II operating can accelerate the convergence speed towards the non-dominated front and ensures the solutions attained are well spread over it. The proposed hybrid method has been experimentally evaluated by applying to the Breast cancer classification problem. It has been experimentally shown that the combination of the local search method has a positive impact to the final solution and thus increased the classification accuracy of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khosrowshahi, F.: Innovation in artificial neural network learning: learn-on-demand methodology. Autom. Constr. 20(8), 1204–1210 (2011)

    Article  Google Scholar 

  2. Kuo, R., Lin, L.: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering. Decis. Support Syst. 49(4), 451–462 (2010)

    Article  Google Scholar 

  3. Cheok, C.Y., et al.: Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Ind. Crops Prod. 40, 247–253 (2012)

    Article  Google Scholar 

  4. Qasem, S.N., Shamsuddin, S.M.: Memetic elitist pareto differential evolution algorithm based radial basis function networks for classification problems. Appl. Soft Comput. 11(8), 5565–5581 (2011)

    Article  Google Scholar 

  5. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  6. Pettersson, F., Chakraborti, N., Saxén, H.: A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Appl. Soft Comput. 7(1), 387–397 (2007)

    Article  Google Scholar 

  7. Delgado, M., Cuellar, M.P., Pegalajar, M.C.: Multiobjective hybrid optimization and training of recurrent neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 38(2), 381–403 (2008)

    Article  Google Scholar 

  8. Jin, Y., Sendhoff, B., Körner, E.: Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations. In: International Conference on Evolutionary Multi-Criterion Optimization. Springer (2005)

    Google Scholar 

  9. Liu, G., Kadirkamanathan, V.: Multiobjective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms. IEE Proc. Control Theor. Appl. 146(5), 373–382 (1999)

    Article  Google Scholar 

  10. Abbass, H.A., Sarker, R.: Simultaneous evolution of architectures and connection weights in ANNs. In: Proceedings of Artificial Neural Networks and Expert System Conference (2001)

    Google Scholar 

  11. Ibrahim, A.O., Hasan, S., Noman, S.: Memetic Elitist Pareto evolutionary algorithm of three-term backpropagation network for classification problems. Int. J. Adv. Soft Comput. Appl. 6(3), 1 (2014)

    Google Scholar 

  12. Ibrahim, A.O., et al.: Hybrid NSGA-II of three-term backpropagation network for multiclass classification problems. In: 2014 International Conference on Computer and Information Sciences (ICCOINS). IEEE (2014)

    Google Scholar 

  13. Bonissone, P.P., et al.: Hybrid soft computing systems: industrial and commercial applications. Proc. IEEE 87(9), 1641–1667 (1999)

    Article  Google Scholar 

  14. Seera, M., Lim, C.P.: A hybrid intelligent system for medical data classification. Expert Syst. Appl. 41(5), 2239–2249 (2014)

    Article  Google Scholar 

  15. Deja, R., et al.: Hybrid approach to the generation of medical guidelines for insulin therapy for children. Inf. Sci. 384, 157–173 (2017)

    Article  Google Scholar 

  16. Fan, C.-Y., et al.: A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl. Soft Comput. 11(1), 632–644 (2011)

    Article  Google Scholar 

  17. Gorzałczany, M.B., Rudziński, F.: Interpretable and accurate medical data classification–a multi-objective genetic-fuzzy optimization approach. Expert Syst. Appl. 71, 26–39 (2017)

    Article  Google Scholar 

  18. Zheng, B., Yoon, S.W., Lam, S.S.: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst. Appl. 41(4), 1476–1482 (2014)

    Article  Google Scholar 

  19. Turabieh, H.: GA-based feature selection with ANFIS approach to breast cancer recurrence. Int. J. Comput. Sci. Issues (IJCSI) 13(1), 36 (2016)

    Article  Google Scholar 

  20. Ahmad, F., et al.: A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Anal. Appl. 18(4), 861–870 (2015)

    Article  MathSciNet  Google Scholar 

  21. Ibrahim, A.O., et al.: Intelligent multi-objective classifier for breast cancer diagnosis based on multilayer perceptron neural network and differential evolution. In: 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE). IEEE (2015)

    Google Scholar 

  22. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  23. De Jong, K.A., Spears, W.M.: A formal analysis of the role of multi-point crossover in genetic algorithms. Ann. Math. Artif. Intell. 5(1), 1–26 (1992)

    Article  MATH  Google Scholar 

  24. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)

    MATH  Google Scholar 

  25. Qasem, S.N., et al.: Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems. Inf. Sci. 239, 165–190 (2013)

    Article  MathSciNet  Google Scholar 

  26. Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif. Intell. Med. 25(3), 265–281 (2002)

    Article  Google Scholar 

  27. Ibrahim, A.O., et al.: Three-term backpropagation network based on elitist multiobjective genetic algorithm for medical diseases diagnosis classification. Life Sci. J. 10(4), 1815–1822 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Osman Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Ibrahim, A.O., Shamsuddin, S.M., Saleh, A.Y. (2018). Local Search Based Enhanced Multi-objective Genetic Algorithm of Training Backpropagation Neural Network for Breast Cancer Diagnosis. In: Saeed, F., Gazem, N., Patnaik, S., Saed Balaid, A., Mohammed, F. (eds) Recent Trends in Information and Communication Technology. IRICT 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-59427-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59427-9_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59426-2

  • Online ISBN: 978-3-319-59427-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics