Advertisement

Assessing the Similarity of Situations and Developments by Using Metrics

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 72)

Abstract

In this article we observe numerical evaluations of situations and developments. Similarities will be elaborated from structural and descriptive aspects. The basis of the structural similarity is homomorphism of algebraic systems. The bases of descriptive similarities are claims in descriptions of situations, which are expressible with formulas of calculations of the predictions. Developments will be addressed by binary precedency and sequential links. Mentioned connections will be observed as sets, elements of which are ordered pairs of situations. The procedure for numeric evaluation of similarities is based on metrics of relative difference of final sets. The numeric rating of similarity will be associated with plausibility: the more similar or close the objects are, the more plausible it is, that the acquired knowledge about one object will be valid for other similar object. The method of numeric evaluation of similarities may have interesting and beneficial implementation options for many areas.

Keywords

Descriptive similarities Situations, developments The procedure of evaluation of similarity or difference Similarity and plausibility Unsuccessful IT-projects Situations and developments in security world The comparison of content of documents Values in business management 

References

  1. 1.
    Alas, R., Gao, J., Lorents, P., Übius, Ü., Matsak, E., Carneiro, J.: Associations between ethics and cultural dimensions: similarities and differences concerning ethics in China, Brazil and Estonia. Megadigma J. 4(2), 153–162 (2011)Google Scholar
  2. 2.
    Tuulik, K., Alas, R., Lorents, P., Matsak, E.: Values in institutional context. Probl. Perspect. Manag. 9(2), 8–20 (2011). (SECTION 1. Macroeconomic processes and regional economies management)Google Scholar
  3. 3.
    Cohn, P.M.: Universal Algebra, Harper & Row. Evanstone, New York (1965)Google Scholar
  4. 4.
    Cohn, P.M.: Universal Algebra. Springer, London (1981)CrossRefzbMATHGoogle Scholar
  5. 5.
    Maltsev, A.I., Maлъцeв A.И.: Aлгeбpaичecкиe cиcтeмы. “Hayкa”. Mocквa (1970)Google Scholar
  6. 6.
    Mac Lane, S., Birkhoff, G.: Algebra. AMS Chelsea Publishing (1999)Google Scholar
  7. 7.
    Shoenfield, J.R.: Mathematical Logic. Addiso-Wesley Publishing Company, Boston (1967)zbMATHGoogle Scholar
  8. 8.
    Tanimoto, T.T.: An Elementary Mathematical theory of Classification and Prediction. Internal IBM Technical Report (1957)Google Scholar
  9. 9.
    Tanimoto, T.T.: An elementary mathematical theory of classification and prediction, IBM Report (November, 1958). Cited in: Salton, G.: Automatic Information Organization and Retrieval, p. 238. McGraw-Hill (1968)Google Scholar
  10. 10.
    Marczewski, E., Steinhaus, H.: On a certain distance of sets and the corresponding distance of functions. Colloq. Math. 6(1), 319–327 (1958)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Lorents, P., Lorents, D.: Applying difference metrics of finite sets in diagnostics of systems with human participation. In: Proceedings of the International Conference on Artificial Intelligence, IC – AI’ 2002, vol. 3, pp. 1297–1301 (2002)Google Scholar
  12. 12.
    Lorents, P.: Denotations, knowledge and lies. In: Proceedings of the International Conference on Artificial Intelligence, 2007, Las Vegas, USA, vol. 2, pp. 324–329. CSREA Press (2007)Google Scholar
  13. 13.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Soc. Vaud. des Sci. Nat. 37, 547–579 (1901)Google Scholar
  14. 14.
    Lorents, P., Lorents D.: Applying difference metrics of finite sets in diagnostics of systems with human participation. In: Proceedings of the International Conference on Artificial Intelligence, IC – AI’ 2002, pp. 704–708. CSREA Press (2002)Google Scholar
  15. 15.
    Deza, E., Deza, M.M.: Encyclopedia of Distances. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lipkus, A.H.: A proof of the triangle inequality for the Tanimoto distance. J. Math. Chem. 26, 263–265 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lorents, P.: Mathematical aspects of lies. Theory of Lie. Schola Biotheoretica. 31th Spring School on Theoretical Biology. Eesti Loodusuurijate Selts 2005, pp. 16–40 (2005). ISBN 9985-9591-1-6Google Scholar
  18. 18.
    Jents, M.: Evaluation the difference of knowledge and concepts using the metrics of Lorents. In: Proceedings of the International Conference on Artificial Intelligence. IC – AI’ 2004, vol. 1, pp. 338–341 (2004)Google Scholar
  19. 19.
    Matsak, E., Lorents, P.: Decision-support systems for situation management and communication through the language of algebraic systems. In: 2012 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA 2012), CogSima 2012, pp. 301–307. IEEE Press (2012)Google Scholar
  20. 20.
    Matsak, E.: Dialogue system for extracting logic constructions in natural language texts. In: The 2005 International Conference on Artificial Intelligence, Las Vegas, USA (2005)Google Scholar
  21. 21.
    Matsak, E.: Discovering Logical Constructs from Estonian Children Language. Lambert Academic Publishing, Germany (2010)Google Scholar
  22. 22.
    Arnuphaptrairong, T.: Top ten lists of software project risks: evidence from the literature survey. In: International Multi Conference of Engineers and Computer Scientists, Hong Kong, pp. 1–6 (2011)Google Scholar
  23. 23.
    Kniberg, H.: Get Agile With Crisp. Scrum Checklist 04 October 2010. http://www.crisp.se/gratis-material-och-guider/scrum-checklist
  24. 24.
    Cohn, M.: Serena. Toward a Catalog of Scrum Smells (2003). http://www.serena.com/docs/agile/papers/Scrum-Smells.pdf
  25. 25.
    Lorents, P.: Knowledge and information. In: Proceedings of the 2010 International Conference on Artificial Intelligence. pp. 209–215. CSREA Press (2010)Google Scholar
  26. 26.
    Lorents, P., Matsak, E.: Applying time-dependent algebraic systems for describing situations. In: 2011 IEEE Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA 2011), Miami Beach, FL, 2011, (IEEE Catalog Number: CFP11COH-CDR), pp. 25–31. IEEE Press (2011)Google Scholar
  27. 27.
    Balzacq, T.: Securitization Theory. How Security Problems Emerge and Dissolve. Edited by Balzacq, T. Rotledge. London (2011)Google Scholar
  28. 28.
    Jakobson, G.: Extending situation modeling with inference of plausible future cyber situations. In: The 1st IEEE Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA 2011), Miami Beach, FL, USA (2011)Google Scholar
  29. 29.
    Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5), 34–35 (1971)CrossRefGoogle Scholar
  30. 30.
    Levison, M.: Scrum Community Wiki. 11, July 2008. http://scrumcommunity.pbworks.com/w/page/10149004/Scrum%20Smells
  31. 31.
    Rogers, David J., Tanimoto, Taffee T.: A computer program for classifying plants. Science 132(3434), 1115–1118 (1960). doi: 10.1126/science.132.3434.1115 CrossRefGoogle Scholar
  32. 32.
    Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Soc. Vaud. des Sci. Nat. 37, 241–272 (1901)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Information TechnologyEstonian Business SchoolTallinnEstonia

Personalised recommendations