The Methodology of Studying of Active Traffic Management Module Self-oscillation Regime

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 582)


Self-oscillating modes in computer networks control systems quite negatively affect the characteristics of these networks. The problem of finding the areas of self-oscillations is actual and important as the study of parameters of self-oscillations. Due to the significant nonlinearity of control characteristics, the study of the oscillatory modes presents certain difficulties. This paper describes the technique of research of self-oscillating modes on the basis of the control theory. This material is rather methodical than exploratory one.


Traffic active management Control theory Self-oscillating mode 



The work is partially supported by RFBR grants No’s 15-07-08795 and 16-07-00556. Also the publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement No 02.A03.21.0008).


  1. 1.
    Adams, R.: Active queue management: a survey. IEEE Commun. Surv. Tutorials 15(3), 1425–1476 (2013). doi: 10.1109/SURV.2012.082212.00018 CrossRefGoogle Scholar
  2. 2.
    Altman, E., Jiménez, T.: NS simulator for beginners. Synth. Lect. Commun. Netw. 5(1), 1–184 (2012). doi: 10.2200/S00397ED1V01Y201112CNT010 CrossRefGoogle Scholar
  3. 3.
    Aström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers, p. 408, USA (208)Google Scholar
  4. 4.
    Brockett, R.: Stochastic analysis for fluid queueing systems. In: Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304), vol. 3, pp. 3077–3082. IEEE (1999). doi: 10.1109/CDC.1999.831407
  5. 5.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993). doi: 10.1109/90.251892 CrossRefGoogle Scholar
  6. 6.
    Hollot, C.V.V., Misra, V., Towsley, D.: A control theoretic analysis of RED. In: Proceedings of IEEE Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society, INFOCOM 2001 (Cat. No. 01CH37213), vol. 3, pp. 1510–1519. IEEE (2001). doi: 10.1109/INFCOM.2001.916647
  7. 7.
    Hollot, C.V.V., Misra, V., Towsley, D.: On designing improved controllers for AQM routers supporting TCP flows. In: Proceedings of IEEE Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society, INFOCOM 2001, (Cat. No. 01CH37213), vol. 3, pp. 1726–1734. IEEE (2001). doi: 10.1109/INFCOM.2001.916670
  8. 8.
    Issariyakul, T., Hossain, E.: Introduction to Network Simulator NS2. Springer, New York (2012). doi: 10.1007/978-1-4614-1406-3. 9781461414CrossRefGoogle Scholar
  9. 9.
    Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 18(4), 314–329 (1988). doi: 10.1145/52325.52356 CrossRefGoogle Scholar
  10. 10.
    Jenkins, A.: Self-oscillation. Phys. Rep. 525(2), 167–222 (2013). doi: 10.1016/j.physrep.2012.10.007 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Korolkova, A.V., Kulyabov, D.S., Chernoivanov, A.I.: On the classification of RED algorithms. Bull. Peoples’ Friendship Univ. Russ. Ser. “Math. Inf. Sci. Phys.” (3), 34–46 (2009)Google Scholar
  12. 12.
    Korolkova, A.V., Kulyabov, D.S., Sevastianov, L.A.: Combinatorial and operator approaches to RED modeling. Math. Model. Geom. 3(3), 1–18 (2015)Google Scholar
  13. 13.
    Korolkova, A.V., Velieva, T.R., Abaev, P.A., Sevastianov, L.A., Kulyabov, D.S.: Hybrid simulation of active traffic management. In: Proceedings 30th European Conference on Modelling and Simulation, pp. 685–691 (2016). doi: 10.7148/2016-0685
  14. 14.
    Kushwaha, V., Gupta, R.: Congestion control for high-speed wired network: a systematic literature review. J. Netw. Comput. Appl. 45, 62–78 (2014). doi: 10.1016/j.jnca.2014.07.005 CrossRefGoogle Scholar
  15. 15.
    Lautenschlaeger, W., Francini, A.: Global synchronization protection for bandwidth sharing TCP flows in high-speed links. In: Proceedings of 16th International Conference on High Performance Switching and Routing, IEEE HPSR 2015, Budapest, Hungary (2015)Google Scholar
  16. 16.
    Misra, V., Gong, W.B., Towsley, D.: Stochastic differential equation modeling and analysis of TCP-windowsize behavior. In: Proceedings of Performance 1999 (1999)Google Scholar
  17. 17.
    Misra, V., Gong, W.B., Towsley, D.: Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. ACM SIGCOMM Comput. Commun. Rev. 30(4), 151–160 (2000). doi: 10.1145/347057.347421 CrossRefGoogle Scholar
  18. 18.
    Nyquist, H.: Regeneration theory. Bell Syst. Techn. J. 11(1), 126–147 (1932). doi: 10.1002/j.1538-7305.1932.tb02344.x CrossRefzbMATHGoogle Scholar
  19. 19.
    Ren, F., Lin, C., Wei, B.: A nonlinear control theoretic analysis to TCP-RED system. Comput. Netw. 49(4), 580–592 (2005). doi: 10.1016/j.comnet.2005.01.016 CrossRefGoogle Scholar
  20. 20.
    Velieva, T.R., Korolkova, A.V., Kulyabov, D.S.: Designing installations for verification of the model of active queue management discipline RED in the GNS3. In: 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 570–577. IEEE Computer Society (2015). doi: 10.1109/ICUMT.2014.7002164

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Applied Probability and InformaticsPeoples’ Friendship University of Russia (RUDN University)MoscowRussian Federation
  2. 2.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubna, Moscow RegionRussian Federation
  3. 3.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow RegionRussian Federation

Personalised recommendations