Skip to main content

The Basis of Nanomagnetism

  • Chapter
  • First Online:
Principles of Nanomagnetism

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The exchange length and the magnetic domain wall width are some of the characteristic lengths that are more relevant to the magnetic properties. The shape of the density of electronic states curve is also dependent on the dimensionality of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Alexiou, R. Jurgons, Magnetic drug targeting, in Magnetism in Medicine: A Handbook, 2nd edn., ed. by W. Andrä, H. Nowak (Wiley, Weinheim, 2007), pp. 596–605

    Google Scholar 

  2. S.D. Bader, Colloquium: opportunities in nanomagnetism. Rev. Mod. Phys. 78, 1–15 (2006)

    Article  ADS  Google Scholar 

  3. X. Batlle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D: Appl. Phys. 35, R15–R42 (2002)

    Article  ADS  Google Scholar 

  4. M. Le Bellac, Quantum and Statistical Field Theory (Oxford University Press, Oxford, 1991)

    Google Scholar 

  5. C. Binns, Tutorial section on nanomagnetism, in Nanomagnetism: Fundamentals and Applications, ed. by C. Binns (Elsevier, Oxford, 2014)

    Google Scholar 

  6. J.A.C. Bland, B. Heinrich, Ultrathin Magnetic Structures (Springer, Berlin, 2005)

    Book  Google Scholar 

  7. J.F. Bobo, L. Gabillet, M. Bibes, Recent advances in nanomagnetism and spin electronics. J. Phys. Condens. Matter 16, S471–S496 (2004)

    Article  ADS  Google Scholar 

  8. V.E. Borisenko, S. Ossicini, What is What in the Nanoworld (Wiley, Weinheim, 2004)

    Book  Google Scholar 

  9. K.H.J. Buschow (ed.), Concise Encyclopedia of Magnetic and Superconducting Materials, 2 edn (Elsevier, Amsterdam, 2005)

    Google Scholar 

  10. C. Chappert, A. Barthelémy, Nanomagnetism and spin electronics, in Nanoscience, ed. by C. Dupas, P. Houdy, M. Lahmany (Springer, Berlin, 2007), pp. 503–582

    Chapter  Google Scholar 

  11. K. Chen, A.M. Ferrenberg, D.P. Landau, Static critical behavior of three-dimensional classical Heisenberg models: a high-resolution Monte Carlo study. Phys. Rev. B 48, 3249–3256 (1993)

    Article  ADS  Google Scholar 

  12. C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, The defining length scales of nanomagnetism: a review. J. Phys. Condens. Matter 14, R1175–R1262 (2002)

    Article  ADS  Google Scholar 

  13. A. Enders, P. Gambardella, K. Kern, Magnetism of low-dimensional metallic structures, in Handbook of Magnetism and Advanced Magnetic Materials, vol. 1, ed. by H. Kronmüller, S. Parkin (Wiley, Chichester, 2007), pp. 577–639

    Google Scholar 

  14. M.E. Evans, F. Heller, Environmental Magnetism (Academic Press, San Diego, 2003)

    Google Scholar 

  15. M.R. Fitzsimmons, S.D. Bader, J.A. Borchers, G.P. Felcher, J.K. Furdyna, A. Hoffmann, J.B. Kortright, I.K. Schuller, T.C. Schulthess, S.K. Sinha, M.F. Toney, D. Weller, S. Wolf, Neutron scattering studies of nanomagnetism and artificially structured materials. J. Magn. Magn. Mater. 271, 103–146 (2004)

    Article  ADS  Google Scholar 

  16. P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, Nanostructures for spin electronics, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2006), pp. 403–460

    Chapter  Google Scholar 

  17. O. Fruchart, A. Thiaville, Magnetism in reduced dimensions. Comptes Rendus Phys. 6, 921–933 (2005)

    Article  ADS  Google Scholar 

  18. L. He, C. Chen, N. Wang, W. Zhou, L. Guo, Finite size effect on Néel temperature with Co\(_3\)O\(_4\) nanoparticles. J. Appl. Phys. 102, 103911–103914 (2007)

    Article  ADS  Google Scholar 

  19. R. Hergt, W. Andrä, Magnetic hyperthermia and thermoablation, in Magnetism in Medicine: A Handbook, 2nd edn., ed. by W. Andrä, H. Nowak (Wiley, Weinheim, 2007), pp. 550–570

    Google Scholar 

  20. M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, Amsterdam, 2007)

    Google Scholar 

  21. F. Huang, M.T. Kief, G.J. Mankey, R.F. Willis, Magnetism in the few-monolayers limit: a surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys. Rev. B 49, 3962–3971 (1994)

    Article  ADS  Google Scholar 

  22. J. Jorzick, C. Kramer, S.O. Demokritov, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E. Cambril, E. Sondergard, M. Bailleul, C. Fermon, A.N. Slavin, Spin wave quantization in laterally confined magnetic structures. J. Appl. Phys. 89, 7091–7095 (2001)

    Article  ADS  Google Scholar 

  23. K.-J. Kim, J.-C. Lee, S.-M. Ahn, K.-S. Lee, C.-W. Lee, Y.J. Cho, S. Seo, K.-H. Shin, S.-B. Choe, H.-W. Lee, Interdimensional universality of dynamic interfaces. Nature 458, 740–742 (2009)

    Article  ADS  Google Scholar 

  24. K.-J. Kim, J.-C. Lee, K.-H. Shin, H.-W. Lee, S.-B. Choe, Universal classes of magnetic-field- and electric-current-induced magnetic domain-wall dynamics in one and two dimensional regimes. Curr. Appl. Phys. 13, 228–236 (2013)

    Article  ADS  Google Scholar 

  25. Y. Li, K. Baberschke, Dimensional crossover in ultrathin Ni(111) films on W(110). Phys. Rev. Lett. 68, 1208–1211 (1992)

    Article  ADS  Google Scholar 

  26. A.S. Mathuriya, Magnetotactic bacteria for cancer therapy. Biotechnol. Lett. 37, 491–498 (2015)

    Article  Google Scholar 

  27. I. Mertig, Thin film magnetism: band calculations, in Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn., ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2005)

    Google Scholar 

  28. S. Odenbach, Ferrofluids, in Handbook of Magnetic Materials, vol. 16, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2006), pp. 127–208

    Google Scholar 

  29. S. Ohnishi, A.J. Freeman, M. Weinert, Surface magnetism of Fe(001). Phys. Rev. B 28, 6741–6748 (1983)

    Article  ADS  Google Scholar 

  30. P. O’Neill, Magnetoreception and baroreception in birds. Dev. Growth Differ. 55, 188–197 (2013)

    Article  Google Scholar 

  31. C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, 2003)

    Google Scholar 

  32. M.J. Prandolini, Magnetic nanostructures: radioactive probes and recent developments. Rep. Prog. Phys. 69, 1235–1324 (2006)

    Article  ADS  Google Scholar 

  33. T. Shinjo, Nanomagnetism and Spintronics, 2nd edn. (Elsevier, Amsterdam, 2013)

    Google Scholar 

  34. R. Skomski, Nanomagnetics. J. Phys.: Condens. Matter 15, R841–R896 (2003)

    ADS  Google Scholar 

  35. S.N. Song, J. Ketterson, Ultrathin films and superlattices, in Electronic and Magnetic Properties of Metals and Ceramics, vol. 3A, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley, New York, 1991)

    Google Scholar 

  36. R.L. Stamps, S. Breitkreutz, J. Akerman, A.V. Chumak, Y. Otani, G.E.W. Bauer, J.-U. Thiele, M. Bowen, S.A. Majetich, M. Kläui, I.L. Prejbeanu, B. Dieny, N.M. Dempsey, B. Hillebrands, The 2014 magnetism roadmap. J. Phys. D: Appl. Phys. 47, 333001 (2014)

    Article  ADS  Google Scholar 

  37. C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501–056578 (2008)

    Article  ADS  Google Scholar 

  38. D. Weller, T. McDaniel, Media for extremely high density recording, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2006), pp. 295–324

    Chapter  Google Scholar 

  39. R. Wiltschko, W. Wiltschko, Magnetic Orientation in Animals (Springer, Berlin, 1995)

    Book  MATH  Google Scholar 

  40. R. Wiltschko, W. Wiltschko, The magnetite-based receptors in the beak of birds and their role in avian navigation. J. Comp. Physiol. A 199, 1–10 (2012)

    MATH  Google Scholar 

  41. R. Wu, A.J. Freeman, Spin density at the Fermi level for magnetic surfaces and overlayers. Phys. Rev. Lett. 69, 2867–2870 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto P. Guimarães .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guimarães, A.P. (2017). The Basis of Nanomagnetism. In: Principles of Nanomagnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59409-5_1

Download citation

Publish with us

Policies and ethics