Advertisement

A Study of Nuclei Classification Methods in Histopathological Images

  • Malay Singh
  • Zeng Zeng
  • Emarene Mationg Kalaw
  • Danilo Medina Giron
  • Kian-Tai Chong
  • Hwee Kuan LeeEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 71)

Abstract

Cancer is a group of diseases involving abnormal cell growth with varying malignancy and extent across different patients. Cytological features like prominent nucleoli, nuclear enlargement, and hyperchromasia are important to the tumor pathologist in assessment of cancer malignancy from tissue biopsies. In a recent study, Yap et al. [21] proposed effective prominent nucleoli detectors in histopathological images and developed different feature generation methods. These methods were based on polar gradients and were used along with support vector machine (SVM) and AdaBoost for detection purposes. In this study, we benchmark the performance of these methods along with convolutional and fully connected networks for the task of distinguishing between nuclei with and without prominent nucleolus.

Keywords

AdaBoost Auto-encoder networks Convolutional neural networks Deep learning Nuclei classification 

Notes

Acknowledgments

This work was supported in part by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore; the National University of Singapore, Singapore, the Departments of Urology and Pathology at Tan Tock Seng Hospital, Singapore and Singapore-China NRF-NSFC Grant (No. NRF2016NRF-NSFC001-111). Part of the computational work for this article was done on resources of the National Supercomputing Computer Singapore (https://www.nscc.sg).

References

  1. 1.
    American Cancer Society: Cancer Facts & Figures 2017. American Cancer Society, Atlanta (2017)Google Scholar
  2. 2.
    Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, pp. 411–418. Springer (2013)Google Scholar
  3. 3.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  4. 4.
    Cruz-Roa, A.A., Ovalle, J.E.A., Madabhushi, A., Osorio, F.A.G.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 403–410. Springer (2013)Google Scholar
  5. 5.
    Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)CrossRefGoogle Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)CrossRefGoogle Scholar
  8. 8.
    Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRefGoogle Scholar
  9. 9.
    Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev. Biomed. Eng. 7, 97 (2014)CrossRefGoogle Scholar
  10. 10.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)Google Scholar
  11. 11.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  12. 12.
    Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33(6), 170–175 (2016)CrossRefGoogle Scholar
  13. 13.
    Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: International Conference on Artificial Neural Networks, pp. 52–59. Springer (2011)Google Scholar
  14. 14.
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671 (2012)CrossRefGoogle Scholar
  15. 15.
    Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)CrossRefGoogle Scholar
  16. 16.
    Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)CrossRefGoogle Scholar
  17. 17.
    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M., Tomaszewski, J., Gonzalez, F., Madabhushi, A.: Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection. In: SPIE Medical Imaging, p. 90410B. International Society for Optics and Photonics (2014)Google Scholar
  19. 19.
    Xie, Y., Kong, X., Xing, F., Liu, F., Su, H., Yang, L.: Deep voting: a robust approach toward nucleus localization in microscopy images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 374–382. Springer (2015)Google Scholar
  20. 20.
    Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016)CrossRefGoogle Scholar
  21. 21.
    Yap, C.K., Kalaw, E.M., Singh, M., Chong, K.T., Giron, D.M., Huang, C.H., Cheng, L., Law, Y.N., Lee, H.K.: Automated image based prominent nucleoli detection. J. Pathol. Inform. 6, 39 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Malay Singh
    • 1
    • 2
  • Zeng Zeng
    • 3
  • Emarene Mationg Kalaw
    • 2
  • Danilo Medina Giron
    • 4
  • Kian-Tai Chong
    • 5
  • Hwee Kuan Lee
    • 1
    • 2
    • 6
    Email author
  1. 1.Department of Computer Science, School of ComputingNational University of SingaporeSingaporeSingapore
  2. 2.Bioinformatics InstituteSingaporeSingapore
  3. 3.Distributed Analytics LaboratoryInstitute for Infocomm ResearchSingaporeSingapore
  4. 4.Department of PathologyTan Tock Seng HospitalSingaporeSingapore
  5. 5.Department of UrologyTan Tock Seng HospitalSingaporeSingapore
  6. 6.Image and Pervasive Access LaboratoryInstitute for Infocomm ResearchSingaporeSingapore

Personalised recommendations