Skip to main content

Flux Characterization in Heterogeneous Transport Problems by the Boundary Integral Method

  • Chapter
  • First Online:
Book cover Integral Methods in Science and Engineering, Volume 2

Abstract

Potential flow problems with spatially varying transport coefficients are commonplace. While numerical methods are often implemented for such problems, coupled analytic solutions to heterogeneous, anisotropic problems enable below-grid, nonlinear flow effects to be accurately captured, even for systems with complex source functions. Coupling occurs through construction of boundary integrals to capture material transport between homogeneous domains. Various nonparametric methods are examined to compute the unknown flux distribution, including Gauss node distribution schemes with point source functions and patch-wise, semi-analytic integration. The merits of a posed parametric method that asserts a hybrid boundary condition and avoids numerical integration altogether within an overall analytic structure are further examined here. Reduction of heterogeneous problems to equivalent homogeneous transport property problems yields an additional term with linkage to uniform flux and uniform pressure contributions at increasingly distance interfaces in prolonged systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babu, D., Odeh, A.: Productivity of a horizontal well. SPE Reserv. Eng. 4(4), 417–421 (1989)

    Article  Google Scholar 

  2. Bromwich, T.J.I’A.: An Introduction to the Theory of Infinite Series. Macmillan and Co., London (1908)

    Google Scholar 

  3. Constanda, C.: Direct and Indirect Boundary Integral Equation Methods. Chapman & Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  4. Dogru, A.H.: Giga-cell simulation. Saudi Aramco J. Technol. Spring, 2–7 (2011)

    Google Scholar 

  5. Durlofsky, L.J.: Advanced techniques for reservoir simulation and modeling of non-conventional wells. Final Report, DOE Award DE-AC26-99BC15213. Department of Petroleum Engineering, Stanford University (2004)

    Google Scholar 

  6. Economides, M.J., Deimbacher, F.X., Brand, C.W. et al.: Comprehensive simulation of horizontal-well performance. SPE Form. Eval. 6(4), 418–426 (1991)

    Article  Google Scholar 

  7. Economides, M.J., Brand, C.W., Frick, T.P.: Well configurations in anisotropic reservoirs. SPE Form. Eval. 11(4), 257–262 (1996)

    Article  Google Scholar 

  8. Gradshteyn, I.S.,Ryzhik, I.M.: Table of Series Integrals and Products. Academic, New York (1980)

    MATH  Google Scholar 

  9. Hazlett, R.D., Babu, D.K.: Optimal well placement in heterogeneous reservoirs through semianalytic modeling. SPE J. 10(03), 286–296 (2005)

    Article  Google Scholar 

  10. Hazlett, R., Babu, D.: Readily computable Green’s and Neumann functions for symmetry-preserving triangles. Q. Appl. Math. 67(3), 579–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hazlett, R., Babu, D.: Influence of cell boundary flux distribution on well pressure. Proc. Comput. Sci. 18, 2137–2146 (2013)

    Article  Google Scholar 

  12. Hazlett, R.D., Babu, D.K.: Discrete wellbore and fracture productivity modeling for unconventional wells and unconventional reservoirs. SPE J. 19(01), 19–33 (2014)

    Article  Google Scholar 

  13. Kikani, J., Horne, R.N.: Modeling pressure-transient behavior of sectionally homogeneous reservoirs by the boundary-element method. SPE Form. Eval. 8(2), 145–152 (1993)

    Article  Google Scholar 

  14. Lough, M.F., Lee, S.H., Kamath, J.: An efficient boundary integral formulation for flow through fractured porous media. J. Comput. Phys. 143(2), 462–483 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maizeret, P.-D.: Well indices for non conventional wells. MS Thesis, Stanford University, Stanford (1996)

    Google Scholar 

  16. Masukawa, J., Horne, R.N.: Application of the boundary integral method to immiscible displacement problems. SPE Reserv. Eng. 3(03), 1069–1077 (1988)

    Article  Google Scholar 

  17. McCann, R.C., Hazlett, R.D., Babu, D.K.: Highly accurate approximations of Green’s and Neumann functions on rectangular domains. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 457(2008), 767–772 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Newman, A.B.: Heating and cooling rectangular and cylindrical solids. Ind. Eng. Chem. 28(5), 545–548 (1936)

    Article  Google Scholar 

  19. Odeh, A.S., Babu, D.K.: Transient flow behavior of horizontal wells pressure drawdown and buildup analysis. SPE Form. Eval. 5(01), 7–15 (1990)

    Article  Google Scholar 

  20. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  21. Wolfsteiner, C., Durlofsky, L.J., Aziz, K.: Calculation of well index for nonconventional wells on arbitrary grids. Comput. Geosci. 7, 61–82 (2003)

    Article  MATH  Google Scholar 

  22. Zhang, Y.: Parametric representation of boundary flux in heterogeneous potential flow problems. MS Thesis, University of Tulsa, Tulsa (2015)

    Google Scholar 

  23. Zhang, Y., Hazlett, R.D.: Parametric representation of cell boundary flux distributions in well equations. J. Comput. Appl. Math. 307, 65–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the immense contributions of my longtime collaborator in this field of investigation, Dr. D. Krishna Babu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Hazlett .

Editor information

Editors and Affiliations

Appendix: Partial Integration of the Neumann Function on a Boundary

Appendix: Partial Integration of the Neumann Function on a Boundary

In patch-wise uniform flux boundary elements, assuming \(\frac{a^{2}} {k_{x}} =\max (\frac{a^{2}} {k_{x}}, \frac{b^{2}} {k_{y}}, \frac{h^{2}} {k_{z}})\), we examine partial integration of the point source Neumann function on the boundary as t \(\rightarrow \infty\). Focusing on the triple infinite series term requiring computational advantage, we obtain the following:

$$ \displaystyle\begin{array}{rcl} & & \int _{z_{1}}^{z_{2} }\int _{x_{1}}^{x_{2} }\sum _{l,m,n=1}^{\infty }\frac{C_{lmn}} {\pi ^{2}} \cdot \frac{1} {D_{lmn}^{2}} {}\\ & & \quad \cdot cos(\frac{\pi lx} {a} )cos(\frac{\pi my} {b} )cos(\frac{\pi nz} {h} )cos(\frac{\pi lx_{o}} {a} )cos(\frac{\pi my_{o}} {b} )cos(\frac{\pi mz_{o}} {b} )dx_{o}dz_{o} = {}\\ & & \qquad \frac{ah \cdot H(x - x_{1})H(x_{2} - x)} {4\pi } \cdot \sum _{j=1}^{4}\sum _{ m,n=1}^{\infty }\frac{sin(\frac{\pi nZ_{j}} {h} )cos(\frac{\pi my} {b} )cos(\frac{\pi my_{o}} {b} )} {nD_{mn}^{2}} {}\\ & & -\frac{ah} {8\pi } \cdot sign(X_{i}) \cdot \sum _{m,n=1}^{\infty }\frac{sin(\frac{\pi nZ_{j}} {h} )cos(\frac{\pi my} {b} )cos(\frac{\pi my_{o}} {b} )} {nD_{mn}^{2}} \cdot \frac{sinh[ \frac{\pi a} {\sqrt{k_{x}}}D_{mn}(1 -\frac{\vert X_{i}\vert } {a} )} {sinh[ \frac{\pi a} {\sqrt{k_{x}}}D_{mn})} {}\\ \end{array} $$

where

$$ \displaystyle\begin{array}{rcl} & D_{mn}^{2} \equiv \frac{k_{y}m^{2}} {b^{2}} + \frac{k_{z}n^{2}} {h^{2}} & {}\\ & X_{i} \equiv [(x_{2} + x),(x_{2} - x),-(x + x_{1}),(x - x_{1})]& {}\\ & Z_{j} \equiv [(z_{2} + z),(z_{2} - z),-(z + z_{1}),(z - z_{1})] & {}\\ \end{array} $$

The first term on the RHS can be reduced to a single series with exponential damping, whereas the hyperbolic functions are replaced with exponentials and reformulated in terms of a rapidly convergent double infinite series with exponential damping.

If \(\frac{h^{2}} {k_{z}} \geq \frac{b^{2}} {k_{y}}\), then

$$\displaystyle\begin{array}{rcl} & & \sum _{j=1}^{4}\sum _{ m,n=1}^{\infty }\frac{sin(\frac{\pi nZ_{j}} {h} )cos(\frac{\pi my} {b} )cos(\frac{\pi my_{o}} {b} )} {nD_{mn}^{2}} = {}\\ & & \qquad \qquad \qquad \qquad \qquad \qquad \frac{1} {2} \cdot \sum _{m=1}^{\infty }\frac{h^{2}} {k_{z}}cos(\frac{\pi m(y \pm y_{o})} {b} ) \cdot [\sum _{n=1}^{\infty } \frac{\sum _{k=1}^{4}sin(\frac{\pi nZ_{k}} {h} )} {n(n^{2} + \frac{k_{y}} {k_{z}} \frac{h^{2}} {b^{2}} m^{2})}] {}\\ \end{array}$$

The portion in parentheses can be further reduced. Otherwise,

$$\displaystyle\begin{array}{rcl} & & \sum _{j=1}^{4}\sum _{ m,n=1}^{\infty }\frac{sin(\frac{\pi nZ_{j}} {h} )cos(\frac{\pi my} {b} )cos(\frac{\pi my_{o}} {b} )} {nD_{mn}^{2}} = {}\\ & & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \frac{1} {2} \cdot \sum _{n=1}^{\infty } \frac{b^{2}} {nk_{y}}\sum _{k=1}^{4}sin(\frac{\pi nZ_{k})} {h} \cdot \sum _{m=1}^{\infty } \frac{cos(\frac{\pi m(y\pm y_{o})} {b} )} {(m^{2} + \frac{k_{z}} {k_{y}} \frac{b} {h}n^{2})} {}\\ \end{array}$$

Concerning the second term in the integration,

$$\displaystyle\begin{array}{rcl} & & sign(X_{i}) \cdot \sum _{m,n=1}^{\infty }\frac{sin(\frac{\pi nZ_{j}} {h} )cos(\frac{\pi my} {b} )cos(\frac{\pi my_{o}} {b} )} {nD_{mn}^{2}} \cdot \frac{sinh[ \frac{\pi a} {\sqrt{k_{x}}}D_{mn}(1 -\frac{\vert X_{i}\vert } {a} )} {sinh[ \frac{\pi a} {\sqrt{k_{x}}}D_{mn})} = {}\\ & & \qquad \qquad 4 \cdot \sum _{m=1}^{\infty }\sum _{ n=1}^{\infty }\frac{cos(\frac{\pi my} {b} )cos(\frac{\pi my_{o}} {b} )\sum _{k=1}^{4}sin(\frac{\pi nZ_{k}} {h} )} {n(m^{2}\frac{k_{y}} {b^{2}} + \frac{k_{z}} {h^{2}} n^{2})} {}\\ & & \qquad \qquad \qquad \qquad \qquad \qquad \cdot \frac{\sum _{k=1}^{4}sign(X_{k}) \cdot (e^{-\pi D_{mn}\vert \frac{X_{k}} {a} \vert }- e^{-\pi D_{mn}(2-\vert \frac{X_{k}} {a} \vert )})} {1 - e^{-2\pi D_{mn}}} {}\\ \end{array}$$

This last term can be efficiently coded with termination of infinite summations to desired accuracy.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hazlett, R.D. (2017). Flux Characterization in Heterogeneous Transport Problems by the Boundary Integral Method. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59387-6_12

Download citation

Publish with us

Policies and ethics