Skip to main content

Fredholmness of Nonlocal Singular Integral Operators with Slowly Oscillating Data

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 1

Abstract

Let p ∈ (1, ), α be an orientation-preserving homeomorphism of [0, ] onto itself with only two fixed points 0 and , whose restriction to \(\mathbb{R}_{+} = (0,\infty )\) is a diffeomorphism, and let U α be the isometric shift operator acting on the Lebesgue space \(L^{p}(\mathbb{R}_{+})\) by the rule U α f = (α )1∕p(fα). We establish sufficient conditions for the Fredholmness of the nonlocal singular integral operator N = A + P + + A P on the space \(L^{p}(\mathbb{R}_{+})\), where \(P_{\pm } = (I \pm S_{\mathbb{R}_{+}})/2\), I is the identity operator, \(S_{\mathbb{R}_{+}}\) is the Cauchy singular integral operator over \(\mathbb{R}_{+}\), A ± are functional operators of the form

$$\displaystyle{A_{\pm } =\sum _{k\in \mathbb{Z}}a_{k}^{\pm }U_{\alpha }^{k},\ \ \mbox{ where }\ \|A_{ \pm }\|_{W} =\sum _{k\in \mathbb{Z}}\|a_{k}^{\pm }\|_{ L^{\infty }(\mathbb{R}_{+})} <\infty,}$$

under assumptions that the functions logα and coefficients a k ± for all \(k \in \mathbb{Z}\) are bounded and continuous on \(\mathbb{R}_{+}\) and may have slowly oscillating discontinuities at 0 and .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Böttcher, A., Karlovich, Yu.I.: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  2. Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Böttcher, A., Karlovich, Yu.I., Rabinovich, V.S.: The method of limit operators for one-dimensional singular integrals with slowly oscillating data. J. Oper. Theory 43, 171–198 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Böttcher, A., Karlovich, Yu.I., Spitkovsky, I.M.: Convolution Operators and Factorization of Almost Periodic Matrix Functions. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  5. Duduchava, R.: Integral Equations with Fixed Singularities. Teubner Verlagsgesellschaft, Leipzig (1979)

    MATH  Google Scholar 

  6. Fernández-Torres, G., Karlovich, Yu.I.: Two-sided and one-sided invertibility of the Wiener type functional operators with a shift and slowly oscillating data. Banach J. Math. Anal., advance publication, 3 May 2017. doi:10.1215/17358787-2017-0006. http://projecteuclid.org/euclid.bjma/1493776976

  7. Gohberg, I.C., Fel’dman, I.A.: Convolution Equations and Projection Methods for Their Solution. Translations of Mathematical Monographs, vol. 41. American Mathematical Society, Providence, RI (1974)

    Google Scholar 

  8. Karlovich, A.Yu., Karlovich Yu.I., Lebre, A.B.: Sufficient conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data. Integr. Equ. Oper. Theory 70, 451–483 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karlovich, A.Yu., Karlovich Yu.I., Lebre, A.B.: Necessary conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data. Integr. Equ. Oper. Theory 71, 29–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karlovich, A.Yu., Karlovich Yu.I., Lebre, A.B.: Fredholmness and index of simplest singular integral operators with two slowly oscillating shifts. Oper. Matrices 8, 935–955 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karlovich, A.Yu., Karlovich Yu.I., Lebre, A.B.: One-sided invertibility criteria for binomial functional operators with shift and slowly oscillating data. Mediterr. J. Math. 13, 4413–4435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karlovich, Yu.I.: On algebras of singular integral operators with discrete groups of shifts in L p -spaces. Sov. Math. Dokl. 39, 48–53 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Karlovich, Yu.I.: An algebra of pseudodifferential operators with slowly oscillating symbols. Proc. Lond. Math. Soc. 92, 713–761 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karlovich, Yu.I.: Nonlocal singular integral operators with slowly oscillating data. In: Bastos, M.A., et al. (eds.) Operator Algebras, Operator Theory and Applications. Operator Theory: Advances and Applications, vol. 181, pp. 229–261. Birkhäuser, Basel (2008)

    Chapter  Google Scholar 

  15. Karlovich, Yu.I., Kravchenko, V.G.: An algebra of singular integral operators with piecewise-continuous coefficients and piecewise-smooth shift on a composite contour. Math. USSR Izvestiya 23, 307–352 (1984)

    Article  MATH  Google Scholar 

  16. Karlovich, Yu.I., Silbermann, B.: Local method for nonlocal operators on Banach spaces. In: Böttcher, A., et al. (eds.) Toeplitz Matrices and Singular Integral Equations. Operator Theory: Advances and Applications, vol. 135, pp. 235–247. Birkhäuser, Basel (2002)

    Chapter  Google Scholar 

  17. Karlovich, Yu.I., Silbermann, B.: Fredholmness of singular integral operators with discrete subexponential groups of shifts on Lebesgue spaces. Math. Nachr. 272, 55–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurbatov, V.G.: Functional-Differential Operators and Equations. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  19. Rabinovich, V.S., Roch, S., Silbermann, B.: Limit Operators and Their Applications in Operator Theory. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  20. Roch, S., Santos, P.A., Silbermann, B.: Non-Commutative Gelfand Theories. A Tool-kit for Operator Theorists and Numerical Analysts. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  21. Sarason, D.: Toeplitz operators with semi-almost periodic symbols. Duke Math. J. 44, 357–364 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fernández-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fernández-Torres, G., Karlovich, Y.I. (2017). Fredholmness of Nonlocal Singular Integral Operators with Slowly Oscillating Data. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 1. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59384-5_9

Download citation

Publish with us

Policies and ethics