Advertisement

What Really Matters in Green Infrastructure for the Urban Quality of Life? Santiago de Chile as a Showcase City

  • Ellen BanzhafEmail author
  • Sonia M. Reyes-Paecke
  • Francisco de la Barrera
Chapter
Part of the Future City book series (FUCI, volume 10)

Abstract

The built, green and social environment express the situation of a city and, to a large extent, indicate the development of the urban area. These components of the urban environment have a strong impact on the quality of life of citizens. Along with the concepts of resource efficiency and resilience in cities, the quality of life forms one of the three pillars on which our research on urban transformations is grounded. We approach the concept of quality of life from the environmental perspective and understand the human well-being as an integral part of the broader concept of quality of life. In this study we focus on green infrastructure (GI) as an indication for quality of life research. Here, we measure the extent to which people can access GI as a service and profit from this infrastructure for health-related and social dimensions (Scottish Executive 2005; Bognar 2005). Rapid urbanisation processes accelerate land-use changes that mostly go along with extensive urban land consumption and involve population developments. Such multi-dimensional changes in urban land use and land-consumption patterns are very dynamic and widely ramified. They can evoke unsustainable structures that entangle social-spatial differentiations which are discussed in the context of urban growth and shrinkage processes (see Haase et al. in this volume, dealing with urban dynamics, Seto et al. 2011; Kabisch and Kuhlicke 2014). As land is a limited and contested resource, it demands for infrastructural provision and, particularly with respect to urban quality of life and a sustainable urban development, for the provision of green infrastructure.

References

  1. Banzhaf E, Reyes-Paecke S, Müller A, Kindler A (2013) Do demographic and land-use changes contrast urban and suburban dynamics? A sophisticated reflection on Santiago de Chile. Habitat Int 39:179–191CrossRefGoogle Scholar
  2. Banzhaf E, Kabisch S, Knapp S, Rink D, Wolff M (2017) Integrated research on land-use changes in the face of urban transformations – an analytic framework for further studies. Land Use Policy 60:403–407CrossRefGoogle Scholar
  3. Benedict MA, McMahon ET (2006) Green infrastructure: linking landscapes and communities. Island Press, Washington, DCGoogle Scholar
  4. Bognar G (2005) The concept of quality of life. Soc Theory Pract 321(4):561–580CrossRefGoogle Scholar
  5. Briggs D (2003) Making a difference: indicators to improve children’s environmental health. World Health Organization, GenevaGoogle Scholar
  6. Cilliers S, Cilliers J, Lubbe R, Siebert S (2013) Ecosystem services of urban green spaces in African countries – perspectives and challenges. Urban Ecosyst 16(4):681–702CrossRefGoogle Scholar
  7. De Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272CrossRefGoogle Scholar
  8. De la Barrera F, Reyes-Paecke S, Banzhaf E (2016a) Indicators for green spaces in contrasting urban settings. Ecol Indic 62:212–219CrossRefGoogle Scholar
  9. De la Barrera F, Rubio P, Banzhaf E (2016b) The value of vegetation cover for ecosystem services in the suburban context. Urban Forestry & Urban Greening 16:110–122Google Scholar
  10. De la Barrera F, Reyes-Paecke S, Harris J, Bascuñán D, Farías JM (2016c) People’s perception influences on the use of green spaces in socio-economically differentiated neighborhoods. Urban Forestry & Urban Greening 20:254–264Google Scholar
  11. Díaz IA, Armesto JJ (2003) La conservación de aves silvestres en ambientes urbanos de Santiago (wild birds conservation in urban environments of Santiago). Ambiente y Desarrollo (Chile) XIX:31–38Google Scholar
  12. Dobbs C, Escobedo FJ, Zipperer WC (2011) A framework for developing urban forest ecosystem services and goods indicators. Landsc Urban Plan 99:196–206CrossRefGoogle Scholar
  13. EC – European Commission (2013) Green infrastructure (GI)—enhancing Europe’s natural capital. European Commission, BrusselsGoogle Scholar
  14. EC – European Commission (2016) Environment, nature & biodiversity. Green infrastructure. European Commission, Brussels. http://ec.europa.eu/environment/nature/ecosystems/index_en.htm. Accessed Sept 2016
  15. EEA – European Environmental Agency (2011) Green infrastructure and territorial cohesion. The concept of green infrastructure and its integration into policies using monitoring systems. Technical report 18. European Environment Agency, Copenhagen, Denmark.[online] URL: http://www.eea.europa.eu/publications/green-infrastructure-and-territorial-cohesion. Accessed Sept 2016
  16. EEA – European Environmental Agency (2015) SOER 2015 – The European environment – state and outlook 2015. A comprehensive assessment of the European environment’s state, trends and prospects, in a global context. European Environmental Agency, Copenhagen. http://www.eea.europa.eu/soer. Accessed Sept 2016
  17. Encuesta CASEN (2009) National socio-economic characterization survey. Ministry of Planning, Government of Chile (MIDEPLAN), Santiago de ChileGoogle Scholar
  18. Escobedo FJ, Nowak DJ, Wagner JE, De la Maza CL, Rodríguez M, Crane DE et al (2006) The socioeconomics and management of Santiago de Chile’s public urban forests. Urban Forestry & Urban Greening 4(3):105–114Google Scholar
  19. Fuentes E, Espinoza G, Fuenzalida I (1984) Cambios vegetacionales recientes y percepción ambiental: El caso de Santiago de Chile. Revista de Geografía Norte Grande 11:45–53Google Scholar
  20. Giles-Corti B, Broomhall MH, Knuiman M, Collins C, Douglas K et al (2005) Increasing walking: how important is distance to, attractiveness, and size of public open space? Am J Prev Med 28(2S2):169–176CrossRefPubMedGoogle Scholar
  21. Haines-Young RH, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli D, Frid C (eds) Ecosystem ecology: a new synthesis, BES ecological reviews series. Cambridge University Press, CambridgeGoogle Scholar
  22. Halper EB, Scott CA, Yool SR (2012) Correlating vegetation, water use, and surface temperature in a semiarid city: a multiscale analysis of the impacts of irrigation by single-family residences. Geogr Anal 44(3):235–257CrossRefGoogle Scholar
  23. Hansen R, Werner R, Santos A, Luz AC, Száraz L, Tosics I et al. (2016) Advanced urban green infrastructure planning and implementation – innovative approaches and strategies from European cities. Technical report, April 2016, p 205. doi:  10.13140/RG.2.1.3948.9680
  24. Holmgren M (2002) Exotic herbivores as drivers of plant invasion and switch to ecosystem alternative states. Biol Invasions 4:25–33CrossRefGoogle Scholar
  25. Inostroza L, Palme M, De la Barrera F (2016) A heat vulnerability index: spatial patterns of exposure, sensitivity and adaptive capacity for Santiago de Chile. PLoS One 11(9):e0162464. doi: 10.1371/journal.pone.0162464 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc Ecol 22(3):353–365CrossRefGoogle Scholar
  27. Jim CY, Lo AY, Byrne JA (2015) Charting the green and climate-adaptive city. Landsc Urban Plan 138:51–53CrossRefGoogle Scholar
  28. Kabisch S, Kuhlicke C (2014) Urban transformations and the idea of resource-efficiency, quality of life and resilience: first conceptual considerations for an interdisciplinary research program. Built Environ 40(4):497–507CrossRefGoogle Scholar
  29. Landry S, Chakraborty J (2009) Street trees and equity: evaluating the spatial distribution of an urban amenity. Environ Plann A 41:2651–2670CrossRefGoogle Scholar
  30. Lapham SC, Cohen DA, Han B, Williamson S, Evenson KR, McKenzie TL et al (2016) How important is the perception of safety to park use? A four city survey. Urban Stud 53(12):2624–2636. doi: 10.1177/0042098015592822 CrossRefGoogle Scholar
  31. Lehmann I, Matheya J, Rößler S, Bräuer A, Goldberg V (2014) Urban vegetation structure types as a methodological approach for identifying ecosystem services – application to the analysis of micro-climatic effects. Ecol Indic 42:58–72CrossRefGoogle Scholar
  32. Livert Aquino F, Gainza X (2014) Understanding density in an Uneven City, Santiago de Chile: implications for social and environmental sustainability. Sustainability 6(9):5876–5897CrossRefGoogle Scholar
  33. Loibl W, Toetzer T (2003) Modeling growth and densification processes in suburban regions – simulation of landscape transition with spatial agents. Environ Model Softw 18(6):553–563CrossRefGoogle Scholar
  34. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253CrossRefPubMedGoogle Scholar
  35. McDonald L, Allen W, Benedict M, O’Connor K (2005) Green infrastructure plan evaluation frameworks. J Conserv Plann 1:12–43Google Scholar
  36. Naumann S, Anzaldua G, Gerdes H, Frelih-Larsen A, Davis M, Berry P et al (2011a) Assessment of the potential of ecosystem-based approaches to climate change adaptation and mitigation in Europe. Final report to the European Commission, DG Environment, BrusselsGoogle Scholar
  37. Naumann S, Davis M, Kaphengst T, Pieterse M, Rayment M (2011b) Design, implementation and cost elements of green infrastructure projects, Final report. European Commission, Brussels, p 138Google Scholar
  38. OECD – Organisation for Economic Co-Operation and Development (1997) Better understanding our cities. The role of urban indicators. Organisation for Economic Co-Operation and Development, Paris, Report, 94 ppGoogle Scholar
  39. Parra DC, Gomez LF, Fleischer NL, Pinzon JD (2010) Built environment characteristics and perceived active park use among older adults: results from a multilevel study in Bogotá. Health Place 16:1174–1181CrossRefPubMedGoogle Scholar
  40. Pavez E, Lobos G, Jaksic F (2010) Cambios de largo plazo en el paisaje y los ensambles de micromamíferos y rapaces en Chile central. Rev Chil Hist Nat 83:99–111CrossRefGoogle Scholar
  41. Pham T, Apparicio P, Séguin A, Landry S, Gagnon M (2012) Spatial distribution of vegetation in montreal: an uneven distribution or environmental inequity? Landsc Urban Plan 107(3):214–224CrossRefGoogle Scholar
  42. Reyes-Paecke S, Figueroa I (2010) Distribución, superficie y accesibilidad de las áreas verdes urbanas en Santiago de Chile. EURE 36(109):89–110Google Scholar
  43. Reyes-Paecke S, Meza L (2011) Jardines residenciales en Santiago de Chile: extensión, distribución y cobertura vegetal (Residential gardens in Santiago de Chile: extent, distribution and vegetation cover). Rev Chil Hist Nat 84:581–592CrossRefGoogle Scholar
  44. Romero H (2007) Cambio climático y crecimiento urbano de las metrópolis chilenas. Mesa redonda sobre aspectos urbanos. Sao Paulo: III conferencia regional sobre cambios globales en América del Sur. 06 de Noviembre de 2007Google Scholar
  45. Romero H, Vásquez A (2005) Evaluación ambiental del proceso de urbanización de las cuencas del piedemonte andino de Santiago de Chile. Revista EURE 94:97–18Google Scholar
  46. Romero H, Vásquez A, Fuentes C, Salgado M, Schmidt A, Banzhaf E (2012) Assessing urban environmental segregation (UES): the case of Santiago de Chile. Ecol Indic 23:76–87CrossRefGoogle Scholar
  47. Salmond JA, Tadaki M, Vardoulakis S et al (2016) Health and climate related ecosystem services provided by street trees in the urban environment. Environ Health 15(Suppl 1):36. doi: 10.1186/s12940-016-0103-6 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Scottish Executive (2005) Quality of life and well-being: measuring the benefits of culture and sport: a literature review and thinkpiece. Scottish Executive Social Research, Edinburgh. http://www.scotland.gov.uk/socialresearch. Accessed Nov 2016
  49. Seto KC, Fragkias M, Günerralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6(8):1–9Google Scholar
  50. Soule ME (1991) Land use planning and wildlife maintenance: guidelines for conserving wildlife in an urban landscape. J Am Plan Assoc 57:313–323CrossRefGoogle Scholar
  51. TEEB (2010) The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. http://www.teebweb.org
  52. The Conservation Fund (2016) Strategic conservation planning. Green Infrastructure. http://www.conservationfund.org/what-we-do/strategic-conservation-planning. Accessed Sept 2016
  53. The Conservation Measures Partnership – CMP (2013) Open standards for the practice of conservation. Version30 / April 2013. http://www.iai.int/wp-content/uploads/2015/08/CMP_Open_Standards_Version_3.0_April_2013.pdf. Accessed Sept 2016
  54. Troy A, Grove JM, O’Neil-Dunne J (2012) The relationship between tree canopy and crime rates across an urban-rural gradient in the greater Baltimore region. Landsc Urban Plan 106:262–270CrossRefGoogle Scholar
  55. UN – United Nations (2011) World population prospects: the revision 2010. United Nations publications ST/ESA/SER.A/313 and ST/ESA/SER.A/317. http://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf. Accessed Sept 2016
  56. UN – United Nations (2012) World urbanization prospects the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New YorkGoogle Scholar
  57. UN – United Nations (2016) Global sustainable development report 2016. United Nations, Department of Economic and Social Affairs, New YorkGoogle Scholar
  58. UNEP – United Nations Environment Programme (2010) Global environmental outlook: Latin America and the Caribbean (GEO LAC 3) http://www.unep.org/pdf/GEOLAC_3_English.pdf. Accessed 20 Apr 2016
  59. World Bank (2014) The World Bank annual report 2014. © World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/20093 License: CC BY-NC-ND 3.0 IGO
  60. Wright H (2011) Understanding green infrastructure: the development of a contested concept in England. Local Environ 16(10):1003–1019CrossRefGoogle Scholar
  61. Wright-Wendel H, Zarger RK, Mihelcic JR (2012) Accessibility and usability: green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America. Landsc Urban Plan 107:272–282CrossRefGoogle Scholar
  62. Wu F (2010) Gated and packaged suburbia: packaging and branding Chinese suburban residential development. Cities 27(5):385–396CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ellen Banzhaf
    • 1
    Email author
  • Sonia M. Reyes-Paecke
    • 2
  • Francisco de la Barrera
    • 3
  1. 1.Department of Urban and Environmental SociologyHelmholtz Centre for Environmental Research - UFZLeipzigGermany
  2. 2.Department of Ecosystems and Environment, Faculty of Agronomy and Forestry EngineeringPontificia Universidad Católica de Chile. Center for Sustainable Urban Development (CEDEUS)SantiagoChile
  3. 3.Institute of Geography, Centre for Urban Sustainable DevelopmentPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations