Tutorial: Asteroseismic Data Analysis with DIAMONDS

  • Enrico CorsaroEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 49)


Since the advent of the space-based photometric missions such as CoRoT and NASA’s Kepler, asteroseismology has acquired a central role in our understanding about stellar physics. The Kepler spacecraft, especially, is still releasing excellent photometric observations that contain a large amount of information not yet investigated. For exploiting the full potential of these data, sophisticated and robust analysis tools are now essential, so that further constraining of stellar structure and evolutionary models can be obtained. In addition, extracting detailed asteroseismic properties for many stars can yield new insights on their correlations to fundamental stellar properties and dynamics. After a brief introduction to the Bayesian notion of probability, I describe the code Diamonds for Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm. NSMC constitutes an efficient and powerful method, in replacement to standard Markov chain Monte Carlo, very suitable for high-dimensional and multimodal problems that are typical of detailed asteroseismic analyses, such as the fitting and mode identification of individual oscillation modes in stars (known as peak-bagging). Diamonds is able to provide robust results for statistical inferences involving tens of individual oscillation modes, while at the same time preserving a considerable computational efficiency for identifying the solution. In the tutorial, I will present the fitting of the stellar background signal and the peak-bagging analysis of the oscillation modes in a red-giant star, providing an example to use Bayesian evidence for assessing the peak significance of the fitted oscillation peaks.



This work has been funded by the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 312844 (SPACEINN).


  1. Bolstad, W.: Introduction to Bayesian Statistics. Wiley, New York (2013)zbMATHGoogle Scholar
  2. Borucki, W.J., Koch, D., Basri, G., et al.: Science 327, 977 (2010)ADSCrossRefGoogle Scholar
  3. Corsaro, E., De Ridder, J.: Astron. Astrophys. 571, A71 (2014)CrossRefGoogle Scholar
  4. Corsaro, E., Stello, D., Huber, D., Bedding, T.R., Bonanno, A., Brogaard, K., Kallinger, T., Benomar, O., White, T.R., Mosser, B., Basu, S., Chaplin, W.J., Christensen-Dalsgaard, J., Elsworth, Y.P., García, R.A., Hekker, S., Kjeldsen, H., Mathur, S., Meibom, S., Hall, J.R., Ibrahim, K.A., Klaus, T.C.: Astrophys. J. 757, 190 (2012). doi:10.1088/0004-637X/757/2/190ADSCrossRefGoogle Scholar
  5. Corsaro, E., Fröhlich, H.-E., Bonanno, A., et al.: Mon. Not. R. Astron. Soc. 430, 2313 (2013)ADSCrossRefGoogle Scholar
  6. Corsaro, E., De Ridder, J., García, R.A.: Astron. Astrophys. 579, A83 (2015)CrossRefGoogle Scholar
  7. Duvall Jr., T.L., Harvey, J.W.: In: Gough, D.O. (ed.) NATO ASIC Proceedings 169: Seismology of the Sun and the Distant Stars, pp. 105–116 (1986)Google Scholar
  8. Feroz, F., Hobson, M.P.: Mon. Not. R. Astron. Soc. 384, 449 (FH08) (2008)Google Scholar
  9. Feroz, F., Hobson, M.P., Bridges, M.: Mon. Not. R. Astron. Soc. 398, 1601 (F09) (2009)Google Scholar
  10. García, R.A., Hekker, S., Stello, D., et al.: Mon. Not. R. Astron. Soc. 414, L6 (2011)ADSCrossRefGoogle Scholar
  11. García, R.A., Mathur, S., Pires, S. et al.: Astron. Astrophys. 568, A10 (2014)CrossRefGoogle Scholar
  12. Harvey, J.: In: Rolfe, E., Battrick, B. (eds.) Future Missions in Solar, Heliospheric & Space Plasma Physics. ESA Special Publication, vol. 235, pp. 199–208. Eruopean Space Agency, Paris (1985)Google Scholar
  13. Jeffreys, H.: Theory of Probability, 3rd edn. Oxford University Press, Oxford (1961)zbMATHGoogle Scholar
  14. Jenkins, J.M., Caldwell, D.A., Chandrasekaran, H., et al.: Astrophys. J. 713, L120 (2010)ADSCrossRefGoogle Scholar
  15. Kallinger, T., De Ridder, J., Hekker, S., et al.: Astron. Astrophys. 570, A41 (2014)CrossRefGoogle Scholar
  16. Keeton, C.R.: Mon. Not. R. Astron. Soc. 414, 1418 (K11) (2011)Google Scholar
  17. Koch, D.G., Borucki, W.J., Basri, G., et al.: Astrophys. J. 713, L79 (2010)ADSCrossRefGoogle Scholar
  18. Shaw, J.R., Bridges, M., Hobson, M.P.: Mon. Not. R. Astron. Soc. 378, 1365 (S07) (2007)Google Scholar
  19. Sivia, D., Skilling, J.: Data Analysis: A Bayesian Tutorial. Oxford Science Publications. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  20. Skilling, J.: AIP Conf. Proc. 735, 395 (SK04) (2004)Google Scholar
  21. Tassoul, M.: Astrophys. J. Suppl. Ser. 43, 469 (1980)ADSCrossRefGoogle Scholar
  22. Trotta, R.: Contemp. Phys. 49, 71 (2008)ADSCrossRefGoogle Scholar
  23. Ulrich, R.K.: Astrophys. J. 306, L37 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.INAF—Osservatorio Astrofisico di CataniaCataniaItaly
  2. 2.Laboratoire AIM Paris-SaclayCEA/DRF—CNRS—Université Paris DiderotGif-sur-Yvette CedexFrance
  3. 3.Departamento de AstrofísicaInstituto de Astrofísica de CanariasLa Laguna, TenerifeSpain

Personalised recommendations