Advertisement

Tutorial: Detecting Planetary Transits and Radial-Velocity Signals

  • Susana BarrosEmail author
  • João P. Faria
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 49)

Abstract

Since the discovery of the first exoplanet orbiting a main-sequence star in 1995, more than 3500 planets have been discovered. Most of these were detected and characterized by means of radial-velocity and/or photometric observations. In this tutorial we present examples of exoplanet detection and characterization using these two methods. We start by showing an application of the Box-fitting Least Squares (bls) algorithm to search for a transiting planet signal in the photometric light curve of EPIC 211089792 recorded by K2. Once the transits are detected we then show how to fit a model to the transit light curve and derive the transit parameters using a least-squares minimization algorithm. In a second exercise we show how to detect the same planet based on radial-velocity data and using the Lomb–Scargle periodogram. Finally, we exemplify how to combine the radial velocities and transits of the exoplanet EPIC 211089792b using a Bayesian approach to derive the planetary parameters. This tutorial hence covers some of the state-of-the-art methods of exoplanet search and characterization.

References

  1. Barning, F.J.M.: Bull. Astron. Inst. Neth. 17, 22 (1963)ADSGoogle Scholar
  2. Cumming, A., Marcy, G.W., Butler, R.P.: Astrophys. J. 526, 890 (1999)ADSCrossRefGoogle Scholar
  3. Davies, S.R.: Mon. Not. R. Astron. Soc. 244, 93 (1990)ADSGoogle Scholar
  4. Deeming, T.J.: Astrophys. Space Sci. 36, 137 (1975)ADSCrossRefMathSciNetGoogle Scholar
  5. Ferraz-Mello, S.: Astron. J. 86, 619 (1981)ADSCrossRefGoogle Scholar
  6. Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: Publ. Astron. Soc. Pac. 125, 306 (2013)ADSCrossRefGoogle Scholar
  7. Kovács, G., Zucker, S., Mazeh, T.: Astron. Astrophys. 391, 369 (2002)ADSCrossRefGoogle Scholar
  8. Kreidberg, L.: Publ. Astron. Soc. Pac. 127, 1161 (2015)ADSCrossRefGoogle Scholar
  9. Leahy, D.A., Elsner, R.F., Weisskopf, M.C.: Astrophys. J. 272, 256 (1983)ADSCrossRefGoogle Scholar
  10. Lomb, N.R.: Astrophys. Space Sci. 39, 447 (1976)ADSCrossRefGoogle Scholar
  11. Mortier, A., Faria, J.P., Correia, C.M., Santerne, A., Santos, N.C.: Astron. Astrophys. 573, A101 (2015)ADSCrossRefGoogle Scholar
  12. Press, W.H., Rybicki, G.B.: Astrophys. J. 338, 277 (1989)ADSCrossRefGoogle Scholar
  13. Santerne, A., Hébrard, G., Lillo-Box, J., et al.: Astrophys. J. 824, 55 (2016)ADSCrossRefGoogle Scholar
  14. Scargle, J.D.: Astrophys. J. 263, 835 (1982)ADSCrossRefGoogle Scholar
  15. Schwarzenberg-Czerny, A.: Mon. Not. R. Astron. Soc. 241, 153 (1989)ADSCrossRefGoogle Scholar
  16. Seager, S., Mallén-Ornelas, G.: Astrophys. J. 585, 1038 (2003)ADSCrossRefGoogle Scholar
  17. Stellingwerf, R.F.: Astrophys. J. 224, 953 (1978)ADSCrossRefGoogle Scholar
  18. van der Klis, M.B.M.: NATO Advanced Study Institutes Series. Series C, Mathematical and Physical Sciences (1988)Google Scholar
  19. Zechmeister, M., Kürster, M.: Astron. Astrophys. 496, 577 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de Astrofísica e Ciências do EspaçoUniversidade do Porto, CAUPPortoPortugal

Personalised recommendations