Modelling Light and Velocity Curves of Exoplanet Hosts

  • Rodrigo F. DíazEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 49)


Research in extrasolar-planet science is data-driven. With the advent of radial-velocity instruments like HARPS and HARPS-N, and transit space missions like Kepler, our ability to discover and characterise extrasolar planets is no longer limited by instrumental precision but by our ability to model the data accurately. This chapter presents the models that describe radial-velocity measurements and transit light curves. I begin by deriving the solution of the two-body problem and from there, the equations describing the radial velocity of a planet-host star and the distance between star and planet centres, necessary to model transit light curves. Stochastic models are then presented and I delineate how they are used to model complex physical phenomena affecting the exoplanet data sets, such as stellar activity. Finally, I give a brief overview of the processes of Bayesian inference, focussing on the construction of likelihood functions and prior probability distributions. In particular, I describe different methods to specify ignorance priors.



The author thanks the organisers of the IVth Azores International Advanced School in Space Sciences and acknowledges the participants—both lecturers and students—for the quality of their work. The preparation of this lecture was carried out within the frame of the Swiss National Centre for Competence in Research “PlanetS” funded by the Swiss National Science Foundation (SNSF). The author acknowledges support by the Argentinian National Council for Research and Technology (CONICET).


  1. Agol, E., Steffen, J., Sari, R., Clarkson, W.: Mon. Not. R. Astron. Soc. 359, 567 (2005)ADSCrossRefGoogle Scholar
  2. Almenara, J.M., Díaz, R.F., Bonfils, X., Udry, S.: Astron. Astrophys. 595, L5 (2016)ADSCrossRefGoogle Scholar
  3. Almenara, J.M., Díaz, R.F., Mardling, R., et al.: Mon. Not. R. Astron. Soc. 453, 2644 (2015)ADSCrossRefGoogle Scholar
  4. Ballard, S., Fabrycky, D., Fressin, F., et al.: Astrophys. J. 743, 200 (2011)ADSCrossRefGoogle Scholar
  5. Barros, S.C.C., Díaz, R.F., Santerne, A., et al.: Astron. Astrophys. 561, L1 (2014)ADSCrossRefGoogle Scholar
  6. Berger, J.O., Bernardo, J.M., Sun, D.: Ann. Stat. 37, 905–938 (2009)CrossRefGoogle Scholar
  7. Berger, J.O., Bernardo, J.M., Sun, D., et al.: Bayesian Anal. 10, 189 (2015)CrossRefMathSciNetGoogle Scholar
  8. Boisse, I., Bonfils, X., Santos, N.C.: Astron. Astrophys. 545, A109 (2012)ADSCrossRefGoogle Scholar
  9. Carter, J.A., Fabrycky, D.C., Ragozzine, D., et al.: Science 331, 562 (2011)ADSCrossRefGoogle Scholar
  10. Claret, A.: Astron. Astrophys. 363, 1081 (2000)ADSGoogle Scholar
  11. Correia, A.C.M., Couetdic, J., Laskar, J., et al.: Astron. Astrophys. 511, A21 (2010)CrossRefGoogle Scholar
  12. Díaz, R.F., Almenara, J.M., Santerne, A., et al.: Mon. Not. R. Astron. Soc. 441, 983 (2014)ADSCrossRefGoogle Scholar
  13. Doyle, L.R., Carter, J.A., Fabrycky, D.C., et al.: Science 333, 1602 (2011)ADSCrossRefGoogle Scholar
  14. Dumusque, X., Boisse, I., Santos, N.C.: Astrophys. J. 796, 132 (2014)ADSCrossRefGoogle Scholar
  15. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)zbMATHGoogle Scholar
  16. Goodman, J., Weare, J.: Commun. Appl. Math. Comput. Sci. 5, 65 (2010)CrossRefMathSciNetGoogle Scholar
  17. Gregory, P.C.: Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  18. Haario, H., Saksman, E., Tamminen, J.: Bernoulli 7, 223–242 (2001)CrossRefMathSciNetGoogle Scholar
  19. Hastings, W.: Biometrika 57, 97 (1970)CrossRefMathSciNetGoogle Scholar
  20. Haywood, R.D., Collier Cameron, A., Queloz, D., et al.: Mon. Not. R. Astron. Soc. 443, 2517 (2014)ADSCrossRefGoogle Scholar
  21. Holman, M.J., Murray, N.W.: Science 307, 1288 (2005)ADSCrossRefGoogle Scholar
  22. Holman, M.J., Fabrycky, D.C., Ragozzine, D., et al.: Science 330, 51 (2010)ADSCrossRefGoogle Scholar
  23. Hut, P.: Astron. Astrophys. 99, 126 (1981)ADSGoogle Scholar
  24. Jaynes, E.T.: Phys. Rev. 106, 620 (1957)ADSCrossRefMathSciNetGoogle Scholar
  25. Jaynes, E.T.: IEEE Trans. Syst. Sci. Cybern. 4, 227 (1968)CrossRefGoogle Scholar
  26. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  27. Jeffreys, H.: In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 186, pp. 453–461. The Royal Society (1946)Google Scholar
  28. Jeffreys, H.: Theory of Probability, 3rd edn. Clarendon Press, Oxford (1961)zbMATHGoogle Scholar
  29. Jontof-Hutter, D., Rowe, J.F., Lissauer, J.J., Fabrycky, D.C., Ford, E.B.: Nature 522, 321 (2015)ADSCrossRefGoogle Scholar
  30. Kipping, D.M.: Mon. Not. R. Astron. Soc. 389, 1383 (2008)ADSCrossRefGoogle Scholar
  31. Kipping, D.M.: Mon. Not. R. Astron. Soc. 408, 1758 (2010)ADSCrossRefGoogle Scholar
  32. Kipping, D.M.: Mon. Not. R. Astron. Soc. 427, 2487 (2012)ADSCrossRefGoogle Scholar
  33. Laplace, P.: Theorie Analytique des Probabilités. Courcier, Paris (1812)zbMATHGoogle Scholar
  34. Mandel, K., Agol, E.: Astrophys. J. 580, L171 (2002)ADSCrossRefGoogle Scholar
  35. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  36. Murray, C.D., Correia, A.C.M.: In: Seager, S. (ed.) Exoplanets, pp. 15–23. University of Arizona Press, Tucson (2010)Google Scholar
  37. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  38. Nesvorný, D., Kipping, D., Terrell, D., et al.: Astrophys. J. 777, 3 (2013)ADSCrossRefGoogle Scholar
  39. Rajpaul, V., Aigrain, S., Osborne, M.A., Reece, S., Roberts, S.: Mon. Not. R. Astron. Soc. 452, 2269 (2015)ADSCrossRefGoogle Scholar
  40. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)Google Scholar
  41. Seager, S., Mallén-Ornelas, G.: Astrophys. J. 585, 1038 (2003)ADSCrossRefGoogle Scholar
  42. Tegmark, M., Strauss, M.A., Blanton, M.R., et al.: Phys. Rev. D 69, 103501 (2004)ADSCrossRefGoogle Scholar
  43. Trotta, R.: ArXiv e-prints, arXiv:1701.01467 (2017)Google Scholar
  44. Winn, J.N.: In: Seager, S. (ed.) Exoplanets, pp. 55–77. University of Arizona Press, Tucson (2010)Google Scholar
  45. Zahn, J.-P.: Astron. Astrophys. 57, 383 (1977)ADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Département d’AstronomieUniversité de GenèveVersoixSwitzerland
  2. 2.Universidad de Buenos Aires, Facultad de Ciencias Exactas y NaturalesBuenos AiresArgentina
  3. 3.Instituto de Astronomía y Física del Espacio (IAFE)CONICET-Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations