Angelini, E., di Tollo, G., Roli, A.: A neural network approach for credit risk evaluation. Q. Rev. Econ. Finan. 48(4), 733–755 (2008)
CrossRef
Google Scholar
Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. arXiv preprint arXiv:1603.02754 (2016)
Chen, Y.W., Lin, C.J.: Combining svms with various feature selection strategies. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction, pp. 315–324. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Gray, J.B., Fan, G.: Classification tree analysis using TARGET. Comput. Stat. Data Anal. 52(3), 1362–1372 (2008)
MathSciNet
CrossRef
MATH
Google Scholar
Hsieh, N.C., Hung, L.P.: A data driven ensemble classifier for credit scoring analysis. Expert Syst. Appl. 37(1), 534–545 (2010)
MathSciNet
CrossRef
Google Scholar
Huang, Z., Chen, H., Hsu, C.J., Chen, W.H., Wu, S.: Credit rating analysis with support vector machines and neural networks: a market comparative study. Decis. Support Syst. 37(4), 543–558 (2004)
CrossRef
Google Scholar
Koutanaei, F.N., Sajedi, H., Khanbabaei, M.: A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring. J. Retail. Consum. Serv. 27, 11–23 (2015)
CrossRef
Google Scholar
Lessmann, S., Baesens, B., Seow, H.V., Thomas, L.C.: Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Eur. J. Oper. Res. 247(1), 124–136 (2015)
CrossRef
MATH
Google Scholar
Pang, S.L., Gong, J.Z.: C5. 0 classification algorithm and application on individual credit evaluation of banks. Syst. Eng. Theory Pract. 29(12), 94–104 (2009)
CrossRef
Google Scholar
Wang, Y., Wang, S., Lai, K.K.: A new fuzzy support vector machine to evaluate credit risk. IEEE Trans. Fuzzy Syst. 13(6), 820–831 (2005)
CrossRef
Google Scholar
Yap, B.W., Ong, S.H., Husain, N.H.M.: Using data mining to improve assessment of credit worthiness via credit scoring models. Expert Syst. Appl. 38(10), 13274–13283 (2011)
CrossRef
Google Scholar
Yu, L., Wang, S., Lai, K.K.: Credit risk assessment with a multistage neural network ensemble learning approach. Expert Syst. Appl. 34(2), 1434–1444 (2008)
CrossRef
Google Scholar