Semantically-Secured Message-Key Trade-Off over Wiretap Channels with Random Parameters

Invited Paper
  • Alexander Bunin
  • Ziv Goldfeld
  • Haim H. Permuter
  • Shlomo Shamai (Shitz)Email author
  • Paul Cuff
  • Pablo Piantanida
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 447)


We study the trade-off between secret message (SM) and secret key (SK) rates simultaneously achievable over a state-dependent (SD) wiretap channel (WTC) with non-causal channel state information (CSI) at the encoder. This model subsumes all other instances of CSI availability as special cases, and calls for an efficient utilization of the state sequence both for reliability and security purposes. An inner bound on the semantic-security (SS) SM-SK capacity region is derived based on a novel superposition coding scheme. Our inner bound improves upon the previously best known SM-SK trade-off result by Prabhakaran et al., and to the best of our knowledge, upon all other existing lower bounds for either SM or SK for this setup. The results are derived under the strict semantic-security metric that requires negligible information leakage for all message-key distributions. The achievability proof uses the strong soft-covering lemma for superposition codes.


Wiretap Channel (WTC) Semantic Security (SS) Superposition Coding Secret Message (SM) Achievability Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of Alexander Bunin and Shlomo Shamai was supported by the European Union’s Horizon 2020 Research And Innovation Programme, grant agreement No. 694630. The work of Z. Goldfeld and H. H. Permuter was supported by the Israel Science Foundation (grant no. 684/11), an ERC starting grant and the Cyber Security Research Grant at Ben-Gurion University of the Negev. The work of Paul Cuff was supported by the National Science Foundation—grant CCF-1350595, and the Air Force Office of Scientific Research—grant FA9550-15-1-0180.


  1. 1.
    Ahlswede R, Csiszár I (1993) Common randomness in information theory and cryptography. part i: secret sharing. IEEE Trans Inf Theory 39(4):1121–1132CrossRefzbMATHGoogle Scholar
  2. 2.
    Bassi G, Piantanida P, Shamai (Shitz) S (2016) Secret key generation over noisy channels with common randomness. ArXiv preprint
  3. 3.
    Bellare M, Tessaro S, Vardy A (2012) A cryptographic treatment of the wiretap channel. In: Proceedings of the advances in cryptology (CRYPTO 2012), Santa Barbara, CA, USAGoogle Scholar
  4. 4.
    Bernstein DJ (2009) Introduction to post-quantum cryptography. In: Post-quantum cryptography. Springer, Berlin, pp 1–14Google Scholar
  5. 5.
    Bloch M, Barros J (2011) Physical-layer security: from information theory to security engineering. Cambridge University Press, Cambridge, UKCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen Y, Vinck AJH (2008) Wiretap channel with side information. IEEE Trans Inf Theory 54(1):395–402MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Csiszár I, Narayan P (2000) Common randomness and secret key generation with a helper. IEEE Trans Inf Theory 46(2):344–366MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gelfand SI, Pinsker MS (1980) Coding for channel with random parameters. Problemy Pered Inform (Probl Inf Trans) 9(1): 19–31Google Scholar
  10. 10.
    Goldfeld Z, Cuff P, Permuter HH (2016) Arbitrarily varying wiretap channels with type constrained states. IEEE Trans Inf Theory 62(12):7216–7244MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldfeld Z, Cuff P, Permuter HH (2016) Semantic-security capacity for wiretap channels of type II. IEEE Trans Inf Theory 62(7):3863–3879MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldfeld Z, Cuff P, Permuter HH (2016) Wiretap channel with random states non-causally available at the encoder. Submitted to IEEE Trans Inf TheoryGoogle Scholar
  13. 13.
    Han T, Verdú S (1993) Approximation theory of output statistics. IEEE Trans Inf Theory 39(3):752–772MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hou J, Kramer G (2013) Informational divergence approximations to product distributions. In: Proceedings of the 13th Canadian Workshop Information Theory (CWIT), Toronto, Ontario, CanadaGoogle Scholar
  15. 15.
    Johnson MW et al (2011) Quantum annealing with manufactured spins. Nature 473(7346):194–198CrossRefGoogle Scholar
  16. 16.
    Jones N (2013) Google and NASA snap up quantum computer D-Wave two.
  17. 17.
    Khisti A, Diggavi SN, Wornell GW (2011) Secret-key agreement with channel state information at the transmitter. IEEE Trans Inf Forensics Secur 6(3):672–681CrossRefGoogle Scholar
  18. 18.
    Liu Y, Chen HH, Wang L (First quarter 2017) Physical layer security for next generation wireless networks: theories, technologies, and challenges. IEEE Commun Surv Tut 19(1): 347–376Google Scholar
  19. 19.
    Maurer UM (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theory 39(3):733–742MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Perlner RA, Cooper DA (2009) Quantum resistant public key cryptography: a survey. In: Proceedings of symposium on identity and trust on the internet (IDtrust). pp. 85–93. ACM, Gaithersburg, MarylandGoogle Scholar
  21. 21.
    Prabhakaran V, Eswaran K, Ramchandran K (2012) Secrecy via sources and channels. IEEE Trans Inf Theory 85(11):6747–6765MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shor PW (1999) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review 41(2):303–332MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Slepian D, Wolf J (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Song E, Cuff P, Poor V (2016) The likelihood encoder for lossy compression. IEEE Trans Inf Theory 62(4):1836–1849MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wyner AD (1975) The common information of two dependent random variables. IEEE Trans Inf Theory 21(2):163–179MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wyner AD (1975) The wire-tap channel. Bell Sys. Techn. 54(8):1355–1387MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wyner AD, Ziv J (1976) The rate-distortion function for source coding with side information at the decoder. IEEE Trans Inf Theory 1:1–10MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zeng K (2015) Physical layer key generation in wireless networks: challenges and opportunities. IEEE Commun Mag 53(6):33–39CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alexander Bunin
    • 1
  • Ziv Goldfeld
    • 2
  • Haim H. Permuter
    • 2
  • Shlomo Shamai (Shitz)
    • 1
    Email author
  • Paul Cuff
    • 3
  • Pablo Piantanida
    • 4
  1. 1.Technion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Ben-Gurion University of the NegevBeershebaIsrael
  3. 3.Princeton UniversityPrincetonUS
  4. 4.CentraleSupélec-CNRS-UniversitéParis-SudFrance

Personalised recommendations