MicroRNAs Associated with Tuberous Root Development

  • Yuyan Sun
  • Xixiang LiEmail author
Part of the Compendium of Plant Genomes book series (CPG)


MicroRNAs (miRNAs) are a class of small noncoding RNAs that perform important regulatory roles in plant growth and development. In this chapter, we introduced the miRNAs associated with radish tuberous root development at the whole genome level. Five small RNA (sRNA) libraries were constructed from roots of Asian big radish at different developmental stages. A total of 147.99 M clean reads were generated, from which 494 known miRNAs belonging to 434 families, and 220 putative novel miRNAs were obtained. Combined with target prediction and annotation, 77 (71 known and 6 novel miRNAs) differentially expressed miRNAs were potentially associated with tuberous root development. Target transcripts of these tuberous root associated miRNAs were involved in various biological processes, including development process, transcription factor regulation, plant hormone signaling, cell cycle regulation, and carbohydrate metabolism.


  1. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221CrossRefPubMedGoogle Scholar
  2. Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 39:D32–D37CrossRefPubMedGoogle Scholar
  4. Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier J, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887CrossRefPubMedGoogle Scholar
  5. Curtis IS (2003) The noble radish: past, present and future. Trends Plant Sci 8:305–307CrossRefPubMedGoogle Scholar
  6. Eldem V, Akcay UC, Ozhuner E, Bakır Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS ONE 7(12):e50298CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219CrossRefPubMedPubMedCentralGoogle Scholar
  8. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:121–124CrossRefGoogle Scholar
  9. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:154–158CrossRefGoogle Scholar
  10. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gutierrez L, Bussell DI, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance. Plant Cell 21(10):3119–3132CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X (2012) GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot 63:6267–6281CrossRefPubMedPubMedCentralGoogle Scholar
  13. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRefPubMedGoogle Scholar
  14. Hutvagne G (2005) Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett 579(26):5850–5857CrossRefGoogle Scholar
  15. Iwata H, Niikura S, Matsuura SY, Takano Y, Ukai Y (2004) Genetic control of root shape at different growth stages in radish (Raphanus sativus L.). Breed Sci 54:117–124CrossRefGoogle Scholar
  16. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefPubMedGoogle Scholar
  17. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321CrossRefPubMedGoogle Scholar
  18. Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44CrossRefPubMedGoogle Scholar
  19. Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148CrossRefPubMedGoogle Scholar
  20. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. PNAS 101:12753–12758CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lee Y, Kim M, Han J, Yeom K, Lee S, Baek SH, Kim V (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967CrossRefPubMedGoogle Scholar
  23. Li J, Guo G, Guo W, Guo G, Tong D, Ni Z, Sun Q, Yao Y (2012) miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.). BMC Plant Boil 12:220CrossRefGoogle Scholar
  24. Mallory AC, Dugas DV, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046CrossRefPubMedGoogle Scholar
  25. Mao WH, Li ZY, Xia XJ, Li YD, Yu QJ (2012) A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific 463 expression of microRNAs and their targets in cucumber. PLoS ONE 7:e33040CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y (2013) Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol 13:140CrossRefPubMedPubMedCentralGoogle Scholar
  27. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moxon S, Jing R, Szittya G, Schwach F, Rusholme-Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609CrossRefPubMedPubMedCentralGoogle Scholar
  29. Perrin RM, DeRocher AE, Bar-Peled M, Zeng W, Norambuena L, Orellana A, Raikhel NV, Keegstra K (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979CrossRefPubMedGoogle Scholar
  30. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rubatzky VE, Yamaguchi M (1997) World vegetables: principles, production, and nutritive values, 2nd edn. Chapman & Hall, New YorkCrossRefGoogle Scholar
  33. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527CrossRefPubMedGoogle Scholar
  34. Tomotsugu K, Masahiko F, Masao T, Masaru O (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19:473–484CrossRefGoogle Scholar
  35. Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M (2008) Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breed Sci 58:55–61CrossRefGoogle Scholar
  36. Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan LF, Li X, Fang J (2012a) Identification of microRNAs from Amur grape (vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genom 13:122Google Scholar
  37. Wang FD, Li LB, Liu LF, Li HY, Zhang YH, Yao YY, Ni ZF, Gao JW (2012b) High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genomics 287(7):555–563Google Scholar
  38. Williams L, Grigg SP, Xie MT, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166 g and its AtHD-ZIP target genes. Development 132:3657–3668CrossRefPubMedGoogle Scholar
  39. Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013a) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exl Bot 64(14):4271–4287Google Scholar
  40. Xu L, Wang Y, Xu Y, Wang L, Zhai L, Zhu X, Gong Y, Ye Q, Liu L (2013b) Identification and characterization of novel and conserved microRNAs in radish (Raphanus sativus L.) using high-throughput sequencing. Plant Sci 201–202:108–114Google Scholar
  41. Yao YY, Guo GG, Ni ZF, Sunkar R, Zu JK, Sun QX (2007) Cloning and characterization of microRNAs from wheat (Triticuma estivum L.). Genome Biol 8:R96CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS (2010) Auxin regulation of the microRNA390-dependent trans-acting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38(4):1382–1391CrossRefPubMedGoogle Scholar
  43. Zaki HEM, Yokoi S, Takahata Y (2010) Identification of genes related to root shape in radish (Raphanus sativus) using suppression subtractive hybridization. Breed Sci 60:130–138CrossRefGoogle Scholar
  44. Zhang X, Yue Z, Mei S, Qiu Y, Yang X, Chen X, Chen F, Wu Z, Sun Y, Jing Y, Liu B, Shen D, Wang H, Cui N, Duan Y, Wu J, Wang J, Gan C, Wang J, Wang X, Li X (2015) A de novo genome of a Chinese radish cultivar. Hortic Plant J 1(3):155–164Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations