Advertisement

Comparative Analysis of the Radish Genome with Brassica Genomes

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Raphanus sativus L. includes an annual root vegetable crop, radish, and diverse wild species. R. sativus has a long history of domestication, but its phylogenetic position in the tribe Brassiceae is controversial. A comprehensive analysis of the R. sativus genome will provide fundamental information about the structure of its genome, evolutionary features of polyploidy, and significant insight for phylogenetic delimitation of this species. Diverse genomic resources, including a high-density genetic map, clone libraries, cytogenetic data, and transcriptome data, have been developed to sequence the genome. Recently, the R. sativus cv. ‘WK10039’ (2n = 18, 510.8 Mb) genome was sequenced and assembled into nine chromosome pseudomolecules spanning >98% of the gene space. Comparative mapping of the tPCK-like ancestral genome based on conserved ortholog set markers and proteome comparison revealed that the R. sativus genome has intermediate characteristics between the Brassica A/C and B genomes with triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between R. sativus and diploid Brassica species provide genomic evidence for species delimitation of R. sativus and reconstruction of the mesohexaploid ancestral genome.

References

  1. Arumugam N, Mukhopadhyay A, Gupta V, Sodhi Y, Verma J, Pental D, Pradhan A (2002) Synthesis of somatic hybrids (RCBB) by fusing heat-tolerant Raphanus sativus (RR) and Brassica oleracea (CC) with Brassica nigra (BB). Plant Breed 121:168–170CrossRefGoogle Scholar
  2. Beilstein M, Al-Shehbaz I, Kellogg E (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619CrossRefPubMedGoogle Scholar
  3. Bushakra JM, Sargent DJ, Cabrera A, Crowhurst R, Girona EL, Velasco R, Symonds VV, Knaap E, Troggio M, Gardiner SE, Chagné D (2011) Rosaceae conserved orthologous set (RosCOS) markers as a tool to assess genome synteny between Malus and Fragaria. Tree Genet Genomes 8:643–658CrossRefGoogle Scholar
  4. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genom 10:562CrossRefGoogle Scholar
  5. Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao MX, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan GY, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan CC, Tollenaere R, Lu YH, Battail C, Shen JX, Sidebottom CHD, Wang XF, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu ZS, Sun FM, Lim YP, Lyons E, Town CD, Bancroft I, Wang XW, Meng JL, Ma JX, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou YM, Hua W, Sharpe AG, Paterson AH, Guan CY, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953CrossRefPubMedGoogle Scholar
  6. Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755CrossRefPubMedGoogle Scholar
  7. Cheng F, Mandáková T, Wu J, Xie Q, Lysak M, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7:e36442CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jeong Y-M, Chung W-H, Chung H, Kim N, Park B-S, Lim K-B, Yu H-J, Mun J-H (2014) Comparative analysis of the radish genome based on a Conserved Ortholog Set (COS) of Brassica. Theor Appl Genet 127:1975–1989CrossRefPubMedGoogle Scholar
  12. Jeong Y-M, Kim N, Ahn B, Oh M, Chung W-H, Chung H, Jeong S, Lim K-B, Hwang Y-J, Kim G-B, Baek S, Choi S-B, Hyung D-J, Lee S-W, Sohn S-H, Kwon S-J, Jin M, Seol Y-J, Chae W, Choi K, Park B-S, Yu H-J, Mun J-H (2016) Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet 129:1357–1372CrossRefPubMedGoogle Scholar
  13. Kaneko Y, Kimizuka-Takagi C, Bang S, Matsuzawa Y (2007) Radish. In: Kole C (ed) Vegetables. Springer, Berlin, pp 141–160CrossRefGoogle Scholar
  14. Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  15. Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species—Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot 92:761–767CrossRefPubMedGoogle Scholar
  16. Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lee S-S, Lee S-A, Yang J, Kim J (2011) Developing stable progenies of × Brassicoraphanus, an intergeneric allopolyploid between Brassica rapa and Raphanus sativus, through induced mutation using microspore culture. Theor Appl Genet 122:885–891CrossRefPubMedGoogle Scholar
  18. Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng G, Cullis C, Findlay S, Ritland CE, Bohlmann J, Ritland K (2008) Identification of COS markers in the Pinaceae. Tree Genet Genomes 5:247–255CrossRefGoogle Scholar
  19. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G, Pires J, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A, Park B, Ruperao P, Cheng F, Waminal N, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930PubMedPubMedCentralGoogle Scholar
  20. Lü N, Yamane K, Ohnishi O (2008) Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breed Sci 58:15–22CrossRefGoogle Scholar
  21. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefPubMedGoogle Scholar
  22. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lysak MA, Koch MA (2011) Phylogeny, genome, and karyotype evolution of crucifers (Brassicaceae). In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 1–31Google Scholar
  24. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lysak MA, Mandakova T, Schranz ME (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr Opin Plant Biol 30:108–115CrossRefPubMedGoogle Scholar
  26. Mandakova T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matsuzawa Y, Sarashima M (1986) Intergeneric hybridization between Raphanus sativus L. and Brassica nigra Koch. and alloplasmic radish derivative. Breed Sci 36:122–130Google Scholar
  28. Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T (2015) The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep 5:10835CrossRefPubMedPubMedCentralGoogle Scholar
  29. Moghe G, Hufnagel D, Tang H, Xiao Y, Dworkin I, Town C, Conner J, Shiu S (2014) Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. Plant Cell 26:1925–1937CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mun J-H, Chung H, Chung W-H, Oh M, Jeong Y-M, Kim N, Ahn B, Park B-S, Park S, Lim K-B, Hwang Y-J, Yu H-J (2015) Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theor Appl Genet 128:259–272CrossRefPubMedGoogle Scholar
  31. Murat F, Louis A, Maumus F, Armero A, Cooke R, Quesneville H, Crollius HR, Salse J (2015) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 16:262 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452 Google Scholar
  33. Navabi Z-K, Huebert T, Sharpe A, O’Neill C, Bancroft I, Parkin IA (2013) Conserved microstructure of the Brassica B genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea. BMC Genom 14:250CrossRefGoogle Scholar
  34. Nelson M, Parkin I, Lydiate D (2011) The mosaic of ancestral karyotype blocks in the Sinapis alba L. genome. Genome 54:33–41CrossRefPubMedGoogle Scholar
  35. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9:113CrossRefGoogle Scholar
  36. Paritosh K, Gupta V, Yadava S, Singh P, Pradhan A, Pental D (2014) RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genom 15:396CrossRefGoogle Scholar
  37. Parkin IAP, Koh C, Tang HB, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F, Belcram H, Links MG, Just J, Clarke C, Bender T, Huebert T, Mason AS, Pires JC, Barker G, Moore J, Walley PG, Manoli S, Batley J, Edwards D, Nelson MN, Wang XY, Paterson AH, King G, Bancroft I, Chalhoub B, Sharpe AG (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77CrossRefPubMedPubMedCentralGoogle Scholar
  38. Prakash S, Bhat S, Quiros C, Kirti P, Chopra V (2009) Brassica and its close allies: cytogenetics and evolution. In: Jules J (ed) Plant breed reviews, vol 31. Wiley, London, pp 21–187CrossRefGoogle Scholar
  39. Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484CrossRefPubMedGoogle Scholar
  40. Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108:4069–4074CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542CrossRefPubMedGoogle Scholar
  42. Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs): 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600CrossRefPubMedGoogle Scholar
  43. Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs): 3. Genomic relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497–506CrossRefPubMedGoogle Scholar
  44. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  45. The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040CrossRefGoogle Scholar
  46. Thormann CE, Ferreira ME, Camargo LE, Tivang JG, Osborn TC (1994) Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet 88:973–980CrossRefPubMedGoogle Scholar
  47. Timms L, Jimenez R, Chase M, Lavelle D, McHale L, Kozik A, Lai Z, Heesacker A, Knapp S, Rieseberg L, Michelmore R, Kesseli R (2006) Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements. Genetics 173:2227–2235CrossRefPubMedPubMedCentralGoogle Scholar
  48. Warwick S, Al-Shehbaz I (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259:237–248CrossRefGoogle Scholar
  49. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389-452Google Scholar
  50. Warwick S, Black L (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)-chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92CrossRefPubMedGoogle Scholar
  51. Warwick S, Black L (1997) Phylogenetic implications of chloroplast DNA restriction site variation in subtribes Raphaninae and Cakilinae (Brassicaceae, tribe Brassiceae). Can J Bot 75:960–973CrossRefGoogle Scholar
  52. Warwick S, Sauder C (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483CrossRefGoogle Scholar
  53. Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109:12219–12224CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C, Schmutz J, Wing RA, Mitchell-Olds T, Schumaker KS, Wang X (2013) The reference genome of the halophytic plant Eutrema salsugineum. Front Plant Sci 4:46PubMedPubMedCentralGoogle Scholar
  55. Yang Y, Tai P, Chen Y, Li W (2002) A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Mol Phylogenet Evol 23:268–275CrossRefPubMedGoogle Scholar
  56. Yang YW, Lai KN, Tai PY, Ma DP, Li WH (1999) Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. Mol Phylogenet Evol 13:455–462CrossRefPubMedGoogle Scholar
  57. Yang YW, Tseng PF, Tai PY, Chang CJ (1998) Phylogenetic position of Raphanus in relation to Brassica species based on 5S rRNA spacer sequence data. Bot Bull Acad Sin 39:153–160Google Scholar
  58. Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB, Tanksley SD, Nasrallah ME (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Life ScienceThe Catholic University of KoreaBucheonKorea
  2. 2.Department of Bioscience and BioinformaticsMyongji UniversityYonginKorea

Personalised recommendations