Genetic Maps and Whole Genome Sequences of Radish

  • Kenta Shirasawa
  • Hiroyasu Kitashiba
Part of the Compendium of Plant Genomes book series (CPG)


Radish, Raphanus sativus L., is a member of Brassicaceae, to which Arabidopsis thaliana , a model plant in plant biology, belongs, as do other Brassica species including important crops. However, genetic and genomic studies of radish have been behind those of Arabidopsis and Brassica. In this decade, much effort has been made to develop genetic resources for radish, e.g., DNA markers, genetic maps, and whole genome sequences. Studies using the obtained information have revealed the genome structure of radish in terms of ancestral karyotype and have also prompted the identification of genes for agronomically important traits in radish through a map-based cloning strategy and quantitative trait locus analysis. In this chapter, we review the evolving development of radish genetic map in the past 15 years and the current status of genome sequencing of radish. We also introduce the latest strategy for the construction of a high-density genetic map using next-generation sequencing technology and propose a prospective direction of genetics and genomics research in radish which would be helpful for researchers and breeders in their efforts to promote radish breeding programs efficiently.


High-density genetic map Next-generation sequencing (NGS) Restriction-site associated DNA sequencing (RAD-seq) Raphanus Single nucleotide polymorphism (SNP) Whole genome sequence 

Supplementary material

395692_1_En_3_MOESM1_ESM.xlsx (419 kb)
Supplementary material 1 (XLSX 418 kb)
395692_1_En_3_MOESM2_ESM.xlsx (45 kb)
Supplementary material 2 (XLSX 45 kb)
395692_1_En_3_MOESM3_ESM.pdf (18 kb)
Supplementary Fig. 3.1 Comparison of lengths of Rs-RAD map based on MSTmap and Mapmaker programs (PDF 18 kb)


  1. Bett KE, Lydiate DJ (2003) Genetic analysis and genome mapping in Raphanus. Genome 46:423–430CrossRefPubMedGoogle Scholar
  2. Budahn H, Peterka H, Mousa MA, Ding Y, Zhang S, Li J (2009) Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theor Appl Genet 118:775–782CrossRefPubMedGoogle Scholar
  3. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953CrossRefPubMedGoogle Scholar
  4. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hashida T, Nakatsuji R, Budahn H, Schrader O, Peterka H, Fujimura T, Kubo N, Hirai M (2013) Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits. Breed Sci 63:218–226CrossRefPubMedPubMedCentralGoogle Scholar
  6. Inaba R, Nishio T (2002) Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet 105:1159–1165CrossRefPubMedGoogle Scholar
  7. Jeong YM, Kim N, Ahn BO, Oh M, Chung WH, Chung H, Jeong S, Lim KB, Hwang YJ, Kim GB, Baek S, Choi SB, Hyung DJ, Lee SW, Sohn SH, Kwon SJ, Jin M, Seol YJ, Chae WB, Choi KJ, Park BS, Yu HJ, Mun JH (2016) Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet 129:1357–1372CrossRefPubMedGoogle Scholar
  8. Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M (2010) QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theor Appl Genet 120:1021–1027CrossRefPubMedGoogle Scholar
  9. Kaneko Y, Kimizuka-Takagi C, Bang SW, Matsuzawa Y (2007) Radish. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Springer, New York, pp 141–160Google Scholar
  10. Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genom 2012:831460Google Scholar
  12. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  13. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930PubMedPubMedCentralGoogle Scholar
  15. Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T (2011) Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 18:401–411CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  17. Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T (2015) The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep 5:10835CrossRefPubMedPubMedCentralGoogle Scholar
  18. Moghe GD, Hufnagel DE, Tang H, Xiao Y, Dworkin I, Town CD, Conner JK, Shiu SH (2014) Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. Plant Cell 26:1925–1937CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mun JH, Chung H, Chung WH, Oh M, Jeong YM, Kim N, Ahn BO, Park BS, Park S, Lim KB, Hwang YJ, Yu HJ (2015) Construction of a reference genetic map of Raphanus sativus based on genotyping by whole genome resequencing. Theor Appl Genet 128:259–272CrossRefPubMedGoogle Scholar
  20. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542CrossRefPubMedGoogle Scholar
  21. Shiokai S, Shirasawa K, Sato Y, Nishio T (2010) Improvement of the dot-blot-SNP technique for efficient and cost-effective genotyping. Mol Breed 25:179–185CrossRefGoogle Scholar
  22. Shirasawa K, Hirakawa H, Isobe S (2016) Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Res 23:145–153CrossRefPubMedPubMedCentralGoogle Scholar
  23. Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, Kishida Y, Kohara M, Takahashi C, Tsuruoka H, Wada T, Sakai T, Isobe S (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shirasawa K, Shiokai S, Yamaguchi M, Kishitani S, Nishio T (2006) Dot-blot-SNP analysis for practical plant breeding and cultivar identification in rice. Theor Appl Genet 113:147–155CrossRefPubMedGoogle Scholar
  25. Stake M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19(Suppl 2):i215–i225Google Scholar
  26. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098CrossRefPubMedGoogle Scholar
  27. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002CrossRefPubMedGoogle Scholar
  28. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319CrossRefPubMedPubMedCentralGoogle Scholar
  29. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  30. The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039Google Scholar
  31. Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M (2005) Construction of a molecular linkage map of radish (Raphanus sativus L.), based on AFLP and Brassica-SSR markers. Breed Sci 55:107–111CrossRefGoogle Scholar
  32. Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M (2008) Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breed Sci 58:55–61CrossRefGoogle Scholar
  33. U N (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  34. Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212CrossRefPubMedPubMedCentralGoogle Scholar
  35. Xu L, Wang L, Gong Y, Dai W, Wang Y, Zhu X, Wen T, Liu L (2012) Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Theor Appl Genet 125:659–670CrossRefPubMedGoogle Scholar
  36. Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232CrossRefPubMedGoogle Scholar
  37. Yu X, Choi SR, Dhandapani V, Rameneni JJ, Li X, Pang W, Lee JY, Lim YP (2016) Quantitative trait loci for morphological traits and their association with functional genes in Raphanus sativus. Front Plant Sci 7:255PubMedPubMedCentralGoogle Scholar
  38. Yu X, Choi SR, Ramchiary N, Miao X, Lee SH, Sun HJ, Kim S, Ahn CH, Lim YP (2013) Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait. Theor Appl Genet 126:2553–2562CrossRefPubMedGoogle Scholar
  39. Zhang X, Yue Z, Mei S, Qiu Y, Yang X, Chen X, Cheng F, Wu Z, Sun Y, Jing Y, Liu B, Shen D, Wang H, Cui N, Duan Y, Wu J, Wang J, Gan C, Wang J, Wang X, Li X (2015) A de novo genome of a Chinese radish cultivar. Hort Plant J 1:155–164Google Scholar
  40. Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS ONE 8:e53541CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Kazusa DNA Research InstituteKisarazuJapan
  2. 2.Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan

Personalised recommendations