Speciation and Diversification of Radish

Part of the Compendium of Plant Genomes book series (CPG)


Even though the main cultivation of radish is restricted to East Asia (China, Japan, and Korea), the crop is used worldwide for various purposes. In addition to cultivated radish, wild radish is distributed worldwide as a weed. The species relationship of radish to Brassica plants, the origin of cultivated radish, and the intraspecific classification of radish have all been controversial. However, recent developments in genome analysis of both nuclear and organelle genomes as well as the exploitation of transgenic Brassica napus and assessment of dispersal of transgenes have provided new information for phylogenetic studies of Raphanus. In this chapter, recent ideas about inter- and intraspecific divergence based on this information are presented. The morphological diversity of cultivated radish worldwide is also presented.


  1. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  2. Baranger A, Chèvre AM, Eber F, Renard M (1995) Effect of oilseed rape genotype on the spontaneous hybridization rate with a weedy species: an assessment of transgene dispersal. Theor Appl Genet 91:956–963PubMedGoogle Scholar
  3. Bett KE, Lydiate DJ (2003) Genetic analysis and genome mapping in Raphanus. Genome 46:423–430CrossRefPubMedGoogle Scholar
  4. Cheam AH, Code GR (1995) The biology of Australian weeds 24. Raphanus raphanistrum L. Plant Protect Q 10:2–13Google Scholar
  5. Chèvre AM, Eber F, Baranger A, Hureau G, Barret P, Picault H, Renard M (1998) Characterization of backcross generations obtained under field conditions from oilseed rape—wild radish F 1 interspecific hybrids: an assessment of transgene dispersal. Theor Appl Genet 97:90–98CrossRefGoogle Scholar
  6. Crisp P (1995) Radish. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific and Technical, London, pp 86–89Google Scholar
  7. Darmency H, Lefol E, Fleury A (1998) Spontaneous hybridizations between oilseed rape and wild radish. Mol Ecol 7:1467–1473CrossRefGoogle Scholar
  8. Eber F, Boucherie R, Broucqsault L-M, Bouchet Y, Chèvre A-M (1998) Spontaneous hybridization between vegetable crops and weeds. 1: garden radish (Raphanus sativus L.) and wild mustard (Sinapis arvensis L.). Agronomie 18:489–497CrossRefGoogle Scholar
  9. Eber F, Chèvre AM, Baranger A, Vallée P, Tanguy X, Renard H (1994) Spontaneous hybridization between a male-sterile oilseed rape and two weeds. Theor Appl Genet 88:362–368PubMedGoogle Scholar
  10. Gómez-Campo C (1980) Morphology and morphotaxonomy of the Tribe Brassiceae. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies. Japan Scientific Societies Press, Tokyo, pp 3–31Google Scholar
  11. Guéritaine G, Bonavent JF, Darmency H (2003) Variation of prezygotic barriers in the interspecific hybridization between oilseed rape and wild radish. Euphytica 130:349–353CrossRefGoogle Scholar
  12. Guéritaine G, Darmancy H (2001) Polymorphism for interspecific hybridization within a population of wild radish (Raphanus raphanistrum) pollinated by oilseed rape (Brassica napus). Sex Plant Reprod 14:169–172CrossRefGoogle Scholar
  13. Hegde SG, Nason JD, Glegg JM, Ellstrand MC (2006) The evolution of California’s wild radish has resulted in the extinction of its progenitors. Evolution 60:1187–1197CrossRefPubMedGoogle Scholar
  14. Kaneko Y, Matsuzawa Y (1993) Radish. In: Kalloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon Press, London, pp 487–510CrossRefGoogle Scholar
  15. Kitamura S (1958) Varieties and transitions of radish. In: Nishiyama I (ed) Japanese radish. Japanese Science Society, Tokyo, pp 1–19Google Scholar
  16. Lü N, Yamane K, Ohnishi O (2008) Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breed Sci 58:15–22CrossRefGoogle Scholar
  17. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T (2015) The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep 5:10835. doi: 10.1038/srep10835 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Moghe GD, Hufnagel DE, Tang H, Xiao Y, Dworkin I, Town CD, Conner JK, Shiu SH (2014) Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. Plant Cell 26:1925–1937CrossRefPubMedPubMedCentralGoogle Scholar
  20. Pradhan AK, Prakash S, Mukhopadhyay A, Pental D (1992) Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous. Theor Appl Genet 85:331–340PubMedGoogle Scholar
  21. Ridley CE, Kim S-C, Ellstrand NC (2008) Bidirectional history of hybridization in California wild radish, Raphanus sativus (Brassicaceae), as revealed by chloroplast DNA. Am J Bot 95:1437–1442CrossRefPubMedGoogle Scholar
  22. Rollins RC (1993) The Cruciferae of continental North America. Stanford University Press, Stanford, CAGoogle Scholar
  23. Sahli HF, Conner JK, Shaw FH, Howe S, Lale A (2008) Adaptive differentiation of quantitative traits in the globally distributed weed, wild radish (Raphanus raphanistrum). Genetics 180:945–955CrossRefPubMedPubMedCentralGoogle Scholar
  24. Schulz OE (1936) Cruciferae. In: Engler A, Prantle K (eds) Die natürlichen Pflanzenfamilien, vol 17, 2nd edn. Engelmann, Leipzig, pp 227–658Google Scholar
  25. Snow AA, Uthus KL, Culley TM (2001) Fitness of hybrids between weedy and cultivated radish: implications for weed evolution. Ecol Appl 11:934–943CrossRefGoogle Scholar
  26. Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92CrossRefPubMedGoogle Scholar
  27. Warwick SI, Francis A (2005) The biology of Canadian weeds. 132. Raphanus raphanistrum, L. Can J Plant Sci 85:709–733CrossRefGoogle Scholar
  28. Warwick SI, Sauder CA (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483CrossRefGoogle Scholar
  29. Yamagishi H (1998) Distribution and allelism of restorer genes for Ogura cytoplasmic male sterility in wild and cultivated radishes. Genes Genet Syst 73:79–83CrossRefGoogle Scholar
  30. Yamagishi H, Terachi T (1997) Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. IV. Ogura-type cytoplasm found in the wild radish, Raphanus raphanistrum. Plant Breed 116:323–329CrossRefGoogle Scholar
  31. Yamagishi H, Terachi T (2001) Intra- and inter-specific variations in the mitochondrial gene orf138 of Ogura-type male-sterile cytoplasm from Raphanus sativus and Raphanus raphanistrum. Theor Appl Genet 103:725–732CrossRefGoogle Scholar
  32. Yamagishi H, Terachi T (2003) Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus. Genome 46:89–94CrossRefPubMedGoogle Scholar
  33. Yamagishi H, Terachi T, Ozaki A, Ishibashi A (2009) Inter- and intraspecific sequence variations of the chloroplast genome in wild and cultivated Raphanus. Plant Breed 128:172–177CrossRefGoogle Scholar
  34. Yamagishi H, Yamashita Y (2009) Origin of local radish variety, ‘Sabaka’, in Kyoto Prefecture inferred by analyses of genes for cytoplasmic male-sterility and fertility restoration. Hort Res (Japan) 8:1–6CrossRefGoogle Scholar
  35. Yang Y-W, Lai K-N, Tai P-Y, Ma D-P, Li W-H (1999) Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis and allied genera based on the internal transcribed spacer region of 18S–25S rDNA. Mol Phylogenet Evol 13:455–462CrossRefPubMedGoogle Scholar
  36. Yang Y-W, Tai P-Y, Chen Y, Li W-H (2002) A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Mol Phylogenet Euol 13:455–462CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Life SciencesKyoto Sangyo UniversityKita-ku, KyotoJapan

Personalised recommendations