Advertisement

The Use of Genome Information for Intergeneric Hybridization Breeding

  • Sang Woo Bang
  • Katsunori Hatakeyama
  • Yoshihito Takahata
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Radish is an important vegetable crop and has several agriculturally useful traits to improve the breeding of Brassica crops, which include cytoplasmic male sterility, resistance to pod shattering, tolerance to saline soils, and resistance to nematode and diseases. To transfer these traits into Brassica, a number of intergeneric hybridization have been performed using intergeneric cross and/or protoplast fusion, and it was shown that some of them were introduced successfully into and expressed in Brassica or hybrids with Brassica. The various kinds of hybrid progenies such as synthetic amphidiploid line, alloplasmic line, alien gene(s) introgression line, and monosomic alien chromosome addition line would be valuable genetic resources not only to breed more useful cultivars but also to analyze each chromosome and gene concerned. Recently, the development of numerous molecular markers for genetic study has been accelerated in radish, and a high-density linkage map has been constructed. These molecular tools have been used for the identification of QTLs associated with important agronomic traits of radish, genetic analysis of hybridization barrier between radish and Brassica crops, and comparative genomics of Brassicaceae. The further accumulation of genome information will facilitate the cloning of candidate genes in QTLs and the marker-assisted breeding in radish, in addition to the intergenomic transfer of useful radish genes into Brassica crops through intergeneric hybridization.

References

  1. Agnihotri A, Shivanna KR, Raina SN, Lakshmikumaran M, Prakash S, Jagannathan V (1990) Production of Brassica napus × Raphanobrassica hybrids by embryo rescue: an attempt to introduce shattering resistance into B. napus. Plant Breed 105:292–299 CrossRefGoogle Scholar
  2. Akaba M, Kaneko Y, Ito Y, Nakata Y, Bang SW, Matsuzawa Y (2009a) Production and characterization of Brassica napus-Raphanus sativus monosomic addition lines mediated by the synthetic amphidiploid “Raphanobrassica”. Breed Sci 59:109–118CrossRefGoogle Scholar
  3. Akaba M, Kaneko Y, Hatakeyama K, Ishida M, Bang SW, Matsuzawa Y (2009b) Identification and evaluation of clubroot resistance of radish chromosome using a Brassica napus-Raphanus sativus monosomic addition line. Breed Sci 59:203–206CrossRefGoogle Scholar
  4. Ashizawa M, Yoshikawa H, Hida K (1980) Studies on the breeding of clubroot-resistance in cole crops. II. Screening of cole crops of clubroot-resistance (2). Bull Veg Ornam Crops Res Stn A7:35–75Google Scholar
  5. Banga O (1976) Radish, Raphanus sativus (Cruciferae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 60–62Google Scholar
  6. Budahn H, Schrader O, Peterka H (2008) Development of a complete set of disomic rape-radish chromosome-addition lines. Euphytica 162:117–128CrossRefGoogle Scholar
  7. Budahn H, Peterka H, Mousa MAA, Ding Y, Zhang S, Li J (2009) Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theor Appl Genet 118:775–782CrossRefPubMedGoogle Scholar
  8. Delourme R, Budar F (1999) Male sterilisy. In: Gomez-Campo C (ed) Biology of Brassica and coenospecies. Elsevier, Amsterdam, pp 185–216CrossRefGoogle Scholar
  9. Delourme R, Eber F (1992) Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet 85:222–228PubMedGoogle Scholar
  10. Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, Landry BS (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet 97:129–134CrossRefGoogle Scholar
  11. Dolstra O (1982) Synthesis and fertility of × Brassicoraphanus and ways of transferring Raphanus characters to Brassica. Pudoc Wageningen I11. Agric Res Rep 917:1–90Google Scholar
  12. Giancola S, Marhadour S, Desloire S, Clouet V, Falentin-Guyomarc’h H, Laloui W, Falentin C, Pelletier G, Renard M, Bendahmane A, Delourme R, Budar F (2003) Characterization of a radish introgression carrying the fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. Theor Appl Genet 107:1442–1451CrossRefPubMedGoogle Scholar
  13. Harberd DJ, McArthur ED (1980) Meiotic analysis of some species and genus hybrids in the Brassiceae. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies, biology and breeding. Jpn Sci Soc Press, Tokyo, pp 65–87Google Scholar
  14. Hida K (1990) Root crops: Radish. In: Matsuo T (ed) Collected data of plant genetic resources, vol 2. Koudansha, Tokyo, pp 823–834 (in Japanese)Google Scholar
  15. Hu X, Sullivan-Gilbert M, KubikT Danielson J, Hnatiuk N, Marchione W, Greene T, Thompson S (2008) Mapping of the Ogura fertility restorer gene Rfo and development of Rfo allele-specific markers in canola (Brassica napus L.). Mol Breed 22:663–674CrossRefGoogle Scholar
  16. Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M (2010) QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theor Appl Genet 120:1021–1027CrossRefPubMedGoogle Scholar
  17. Kaneko Y, Bang SW (2014) Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breed Sci 64:14–22CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kaneko Y, MatsuzawaY Namai H, Sarashima M (1993) Genetical and breeding evaluation of chromosome addition lines of radish with single kale chromosome. I. Phenotypic expression of some monosomic addition lines for radish and turnip varieties. Bull Coll Agric Utsunomiya Univ 15:27–37Google Scholar
  19. Kaneko Y, Kimizuka-Takagi C, Bang SW, Matsuzawa Y (2007) Radish. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Vegetables. Springer, New York, pp 141–160Google Scholar
  20. Kaneko Y, Bang SW, Matsuzawa Y (2009) Distant hybridization. In: Gupta SK (ed) Biology and breeding of crucifers. Taylor & Francis Group, New York, pp 207–247Google Scholar
  21. Karpechenko GD (1924) Hybrids of Raphanus sativus L. × Brassica oleracea L. J Gent 14:375–396CrossRefGoogle Scholar
  22. Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the Radish (Raphanus sativus L.) genome. DNA Res 21:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  23. Koizuka N, Imai R, Iwabuch M, Sakai T, Imamura J (2000) Gemetic analysis of fertility restration and accumulation of ORF125 mitochondrial protein in the kosena radish (Raphanus sativus cv. Kosena) and a Brassica napus restorer line. Theor Appl Genet 100:949–955CrossRefGoogle Scholar
  24. Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415CrossRefPubMedGoogle Scholar
  25. Krämer R, Scholze P, Marthe F, Ryschka U, Klocke E, Schumann G (2003) Improvement of disease resistance in cabbage: 1. Turnip mosaic virus, TuMV. Gesunde Pflanzen 55:193–198CrossRefGoogle Scholar
  26. Kumazawa S (1965) Radish. In: Vegetable gardening. Youkendo, Tokyo, pp 295–322 (in Japanese)Google Scholar
  27. Lelivelt CLC, Krens FA (1992) Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Theor Appl Genet 83:887–894PubMedGoogle Scholar
  28. Lelivelt CLC, Lange W, Dolstra O (1993a) Intergeneric crosses for the transfer of resistance to the beet cyst nematode from Raphanus sativus to Brassica napus. Euphytica 68:111–120CrossRefGoogle Scholar
  29. Lelivelt CLC, Leunissen EHM, Frederiks HJ, Helsper JPFG, Krens FA (1993b) Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by means of sexual and somatic hybridization. Theor Appl Genet 85:688–696PubMedGoogle Scholar
  30. Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T (2011) Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 18:401–411CrossRefPubMedPubMedCentralGoogle Scholar
  31. Luo P, Li XF, Wang ZQ, Lang ZQ (1989) Studies on wide cross between rapeseed and oil radish. In: Proceedings of the International Congress of SABRAO, pp 467–470Google Scholar
  32. Luo P, Lang ZQ, Deng J, Wang ZQ (2000) Application of in vitro organ culture in wide-cross breeding of rapeseed. Euphytica 114:217–221CrossRefGoogle Scholar
  33. Matsuzawa Y, Kaneko Y, Bang SW (1996) Prospects of the wide cross for genetics and plant breeding in Brassiceae. Bull Coll Agric Utsunomiya Univ 16:5–10Google Scholar
  34. Matsuzawa Y, Funayama T, Kamibayashi M, Konnai M, Bang SW, Kaneko Y (2000) Synthetic Brassica rapa-Raphanus sativus amphidiploid lines developed by reciprocal hybridization. Plant Breed 119:357–359Google Scholar
  35. McNaughton LH (1973) Synthesis and sterility of Raphanobrassica. Euphytica 22:70–88CrossRefGoogle Scholar
  36. Metz PLJ, Nap JP, Stiekema WJ (1995) Hybridization of radish (Raphanus sativus L.) and oilseed rape (Brassica napus L.) through a flower-culture method. Euphytica 83:159–168CrossRefGoogle Scholar
  37. Mizushima U (1980) Genome analysis in Brassica and allied genera. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies, biology and breeding. Jpn Sci Soc Press, Tokyo, pp 89–106Google Scholar
  38. Mousa MAA, Budahn H (2012) Genetic behavior of resistance to the beet cyst nematode (Heterodera schachtii Schm) in radish (Raphanus sativus L.). Afr J Microbiol Res 6:3755–3760Google Scholar
  39. Namai H (1976) Cytogenetic and breeding studies on transfer of economic characters by means of interspecific and intergeneric crossing in the tribe Brassiceae of Cruciferae. Mem Fac Agric Tokyo Univ Educ 22:101–171 (In Japanese with English summary)Google Scholar
  40. Ohtsu F, Tsutsui K, Akaba M, Bang SW (2015) Identification of clubroot resistance genes using a Brassica napus-Raphanus sativus chromosome addition line, and introduction of the clubroot resistance. Breed Res 17(Suppl. 2):85 (In Japanese)Google Scholar
  41. Ogura H (1968) Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Men Fac Agric Kagoshima Univ 6:39–78Google Scholar
  42. Paulmann W, Röbbelen G (1988) Effective transfer of cytoplasmic male sterility from radish (Raphanus sativus L.) to rape (Brassica napus L.). Plant Breed 100:299–309CrossRefGoogle Scholar
  43. Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:224–250CrossRefGoogle Scholar
  44. Peterka H, Budahn H, Schrader O, Ahne R, Schutze W (2004) Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Theor Appl Genet 109:30–41CrossRefPubMedGoogle Scholar
  45. Prakash S, Takahata Y, Kirti PB, Chopra VL (1999) Cytogenetics. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 59–106CrossRefGoogle Scholar
  46. Primard-Brisset C, Poupard JP, Horvais R, Eber F, Pelletier G, Renard M, Delourme R (2005) A new recombined double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.). Theor Appl Genet 111:736–746CrossRefPubMedGoogle Scholar
  47. Sakai T, Imamura J (1990) Intergeneric transfer of cytoplasmic male sterility between Raphanus sativus (cms line) and Brassica napus through cytoplast-protoplast fusion. Theor Appl Genet 80:421–427CrossRefPubMedGoogle Scholar
  48. Sakai T, Liu HJ, Iwabuch M, Kohno-Murase J, Imamura J (1996) Introduction of a gene from fertility restored radish (Raphanus sativus) into Brassica napus by fusion of X-irradiated protoplasts from a radish restorer line and iodacetoamide-treated protoplasts from a cytoplasmic male-sterile cybrid of B. napus. Theor Appl Genet 93:373–379CrossRefPubMedGoogle Scholar
  49. Salisbury PA (1987) Blackleg resistance in weedy crucifers. Crucif Newsl 12:90Google Scholar
  50. Sarashima M (1991) Breeding of artificial amphidiploid. In: Breeding of Brassica crops through interspecific and intergeneric hybridizations (II). Ochiai Books Utsunomiya, pp 5–124 (in Japanese) Google Scholar
  51. Sarashima M, Matsuzawa Y (1989) Intergeneric hybridization between radish (Raphanus sativus L.) and two monogenomic species of Brassica (B. campestris L. and B. nigra Koch.). Bull Coll Agric Utsunomiya Univ 14:99–104 (In Japanese with English summary)Google Scholar
  52. Sarashima M, Matsuzawa Y, Kimura T (1980) Intergeneric hybridization between Brassica oleracea and Raphanus sativus by embryo culture. Crucif Newsl 5:25Google Scholar
  53. Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, Kishida Y, Kohara M, Takahashi C, Tsuruoka H, Wada T, Sakai T, Isobe S (2011) An EST-SSR likage map of Raphanus sativus and coparative genomics of the Brassicaceae. DNA Res 18:221–232CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genom 13:352CrossRefGoogle Scholar
  55. Tian E, Roslinsky V, Cheng B (2014) Molecular marker-assisted breeding for improved Ogura cms restore line (RfoRfo) and mapping of the restore gene (Rfo) in Brassica juncea. Mol Breed 34:1361–1371CrossRefGoogle Scholar
  56. Tokumasu S (1976) The increase of seed fertility of Brassicoraphanus through cytological irregularity. Euphytica 25:463–470CrossRefGoogle Scholar
  57. Tonosaki K, Michiba K, Bang SW, Kitashiba H, Kaneko Y, Nishio T (2013) Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus. Theor Appl Genet 126:837–846CrossRefPubMedGoogle Scholar
  58. Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M (2008) Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L. Breed Sci 58:55–61CrossRefGoogle Scholar
  59. U N, Midusima U, Saitô K (1937) On diploid and triploid Brassica-Raphanus hybrids. Cytologia 8:319–326Google Scholar
  60. Voss A, Luhs WW, Snowdon RJ, Friedt W (1999) Development and molecular characterization of rapeseed (Brassica napus L.) resistant against beet cyst nematodes. In: Proceedings of the 10th international rapeseed congress, Canberra, Australia, 1999Google Scholar
  61. Wang YP, Sonntag K, Rudloff E, Groeneveld I, Gramenz J, Chu CC (2006) Production and characterization of somatic hybrids between Brassica napus and Raphanus sativus. Plant Cell Tiss Organ Cult 86:279–283CrossRefGoogle Scholar
  62. Warwick SI (1993) Guide to the wild germplasm of Brassica and allied crops. Part IV. Wild species in the tribe Brassiceae (Cruciferae) as sources of agronomic traits. Tech Bull 17E:1–9Google Scholar
  63. Yamagishi H, Terachi T (1996) Molecular and biological studies on male sterile cytoplasm in the Cruciferae. III. Distridution of Ogura-type cytoplasm among Japanese wild radishes and Asian radish cultivars. Theor Appl Genet 93:325–332CrossRefPubMedGoogle Scholar
  64. Yoshikawa H (1993) Studies on breeding of clubroot resistance in cole crops (in Japanese with English summary). Bull Natl Res Inst Veg Ornam Plants Tea Japan Ser A7:1–165Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sang Woo Bang
    • 1
  • Katsunori Hatakeyama
    • 2
  • Yoshihito Takahata
    • 2
  1. 1.Faculty of AgricultureUtsunomiya UniversityUtsunomiyaJapan
  2. 2.Faculty of AgricultureIwate UniversityMoriokaJapan

Personalised recommendations