Molecular Mapping of Disease Resistance Genes

  • Xiaona Yu
  • Su Ryun Choi
  • Yong Pyo Lim
Part of the Compendium of Plant Genomes book series (CPG)


Radish is susceptible to all kinds of diseases, and to breed cultivars with high levels of diseases resistance is important for reducing chemical sprays in order to avoid effect on environment. In this chapter, a summary is given on genetic studies of resistance genes in radish. First, we provide an overview of fungi, virus, bacteria, and nematode disease-related QTL studies which were published in recent years and also discuss about the candidate genes/orthologous that were found by comparative QTL/gene mapping on disease resistance loci of Brassicaceae family. Finally, we suggest a few strategies to identify and utilize the resistance genes in radish breeding.


Black rot resistance Clubroot resistance Downy mildew resistance Fusarium wilt resistance Nematode resistance Radish Turnip mosaic virus resistance 



This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Golden Seed Project, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No:213006-05-1-SBO20).


  1. Akaba M, Kaneko Y, Hatakeyama K, Ishida M, Bang SW, Matsuzawa Y (2009) Identification and evaluation of clubroot resistance of radish chromosome using a Brassica napus-Raphanus sativus monosomic addition line. Breed Sci 59:203–206CrossRefGoogle Scholar
  2. Armstrong GM, Armstrong JK (1952) Physiologic races of Fusaria causing wilts of the Cruciferae. Phytopathology 42:255–257Google Scholar
  3. Bain DC (1952) Reaction of Brassica seedlings to black rot. Phytopathology 42:497–500Google Scholar
  4. Bosland PW, Williams PH (1987) An evaluation of Fusarium oxysporum from crucifers based on pathogenicity, isozyme polymorphism, vegetative compatibility, and geographic origin. Can J Bot 65:2067–2073CrossRefGoogle Scholar
  5. Budahn H, Schrader O, Peterka H (2008) Development of a complete set of disomic rape-radish chromosome-addition lines. Euphytica 162:117–128CrossRefGoogle Scholar
  6. Budahn H, Peterka H, Mousa MA, Ding Y, Zhang S, Li J (2009) Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theor Appl Genet 118:775–782CrossRefPubMedGoogle Scholar
  7. Camargo LEA, Williams PH, Osborn TC (1995) Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology 85:1296–1300CrossRefGoogle Scholar
  8. Cheng D (2013) Cloning of turnip mosaic virus resistance related genes and development of trap marker in radish (Raphanus sativus L.). Dissertation, Nanjing Agricultural UniversityGoogle Scholar
  9. Cole SJ, Diener AC (2013) Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol 200:172–184CrossRefPubMedGoogle Scholar
  10. Constantinescu O, Fatehi J (2002) Peronospora-like fungi (Chromista, Peronosporales) parasitic on Brassicaceae and related hosts. Nova Hedwigia 74:291–338CrossRefGoogle Scholar
  11. Diener AC, Ausubel FM (2005) RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321CrossRefPubMedPubMedCentralGoogle Scholar
  12. Duan Y (2014) Genetic analysis and QTL fine mapping of the resistance to black rot in radish (Raphanus sativus L.) germplasm. Dissertation, Chinese Academy of Agricultural SciencesGoogle Scholar
  13. Farinho M, Coelho P, Carlier J, Svetleva D, Monteiro A, Leitao J (2004) Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor Appl Genet 109:1392–1398CrossRefPubMedGoogle Scholar
  14. Farnham MW, Wang M, Thomas CE (2002) A single dominant gene for downy mildew resistance in broccoli. Euphytica 128:405–407CrossRefGoogle Scholar
  15. Fujiwara A, Inukai T, Kim BM, Masuta C (2011) Combinations of a host resistance gene and the CI gene of turnip mosaic virus differentially regulate symptom expression in Brassica rapa cultivars. Arch Virol 156:1575–1581CrossRefPubMedGoogle Scholar
  16. Garibaldi A, Gilardi G, Gullino ML (2006) Evidence for an expanded host range of Fusarium oxysporum f. sp. raphani. Phytoparasitica 34:115–121CrossRefGoogle Scholar
  17. Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S (2004) A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet 108:639–643CrossRefPubMedGoogle Scholar
  18. Hughes S, Hunter P, Sharpe A, Kearsey M, Lydiate D, Walsh J (2003) Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor Appl Genet 107:1169–1173CrossRefPubMedGoogle Scholar
  19. Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc R Soc Lond Ser B 180:103–112CrossRefGoogle Scholar
  20. Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59CrossRefPubMedGoogle Scholar
  21. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M (2010) QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theor Appl Genet 120:1021–1027CrossRefPubMedGoogle Scholar
  23. Kaneko Y, Natsuaki T, Bang SW, Matsuzawa Y (1996) Identification and evaluation of Turnip mosaic virus (TuMV) resistance gene in kale monosomic addition lines of radish. Breed Sci 46:117–124Google Scholar
  24. Kaneko Y, Kimizuka-Takagi C, Bang SW, Matsuzawa Y (2007) Radish. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Springer, Heidelberg, pp 141–160Google Scholar
  25. Karling JS (1968) The Plasmodiophorales: including a complete host index, bibliography, and a description of diseases caused by species of this order, 2nd edn. Hafner, New YorkGoogle Scholar
  26. Kato T, Hatakeyama K, Fukino N, Matsumoto S (2013) Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed Sci 63:116–124CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kendrick JB, Snyder WC (1942) Fusarium wilt of radish. Phytopathology 32:1031–1033Google Scholar
  28. Kifuji Y, Hanzawa H, Terasawa Y, Ashutosh Nishio T (2013) QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers. Euphytica 190:289–295CrossRefGoogle Scholar
  29. Kim SG, Song YH, Lee JY, Choi SR, Dhandapani V, Jang CS, Lim YP, Han TH (2011) Identification of the BrRHP1 locus that confers resistance to downy mildew in Chinese cabbage (Brassica rapa ssp pekinensis) and development of linked molecular markers. Theor Appl Genet 123:1183–1192CrossRefPubMedGoogle Scholar
  30. Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  31. Koike ST, Ochoa OE (2007) Downy mildew caused by Bremia lactucae on strawflower (Helichrysum bracteatum) in California. Plant Dis 91:326CrossRefGoogle Scholar
  32. Kuginuki Y, Ajisaka H, Yui M, Yoshikawa H, Hida K, Hirai M (1997) RAPD markers linked to a clubroot-resistance locus in Brassica rapa L. Euphytica 98:149–154CrossRefGoogle Scholar
  33. Lee J, Izzah NK, Jayakodi M, Perumal S, Joh HJ, Lee HJ, Lee SC, Park JY, Yang KW, Nou IS, Seo J, Yoo J, Suh Y, Ahn K, Lee JH, Choi GJ, Yu Y, Kim H, Yang TJ (2015) Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol 15:32CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lelivelt CL, Krens FA (1992) Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Theor Appl Genet 83:887–894PubMedGoogle Scholar
  35. Li HS (2009) Genetic dissection of resistance to turnip mosaic virus and black rot in radish (Raphanus Sativus L.). Dissertation, Chinese Academy of Agricultural SciencesGoogle Scholar
  36. Magdi AAM (2012) Genetic behavior of resistance to the beet cyst nematode (Heterodera schachtii Schm) in radish (Raphanus sativus L.). African J Microbiol Res 6:3755–3760Google Scholar
  37. Molinero-Ruiz ML, Melero-Vara JM, Dominguez J (2003) Inheritance of resistance to two races of sunflower downy mildew (Plasmopara halstedii) in two Helianthus annuus L. lines. Euphytica 131:47–51CrossRefGoogle Scholar
  38. Mousa M, Kandeel N, Mohamed M, Nasr MA, Budahn H, Peterka H (2004) Mapping QTL (s) for resistance to the beet cyst nematode (Heterodera schachtii Schm.) in radish (Raphanus sativus L.). Ass Univ Bull Environ Res 7:1–18Google Scholar
  39. Paul H, Zijlstra C, Leeuwangh JE, Krens FA, Huizing HJ (1987) Reproduction of the beet cyst nematode Heterodera schachtii Schm. on transformed root cultures of Beta vulgaris L. Plant Cell Rep 6:379–381CrossRefPubMedGoogle Scholar
  40. Peterka H, Budahn H, Schrader O, Ahne R, Schutze W (2004) Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Theor Appl Genet 109:30–41CrossRefPubMedGoogle Scholar
  41. Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465CrossRefPubMedGoogle Scholar
  42. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pu ZJ, Shimizu M, Zhang YJ, Nagaoka T, Hayashi T, Hori H, Matsumoto S, Fujimoto R, Okazaki K (2011) Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea. Mol Breed 30:809–818CrossRefGoogle Scholar
  44. Qian W, Zhang S, Zhang S, Li F, Zhang H, Wu J, Wang X, Walsh JA, Sun R (2013) Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theor Appl Genet 126:179–188CrossRefPubMedGoogle Scholar
  45. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073CrossRefPubMedGoogle Scholar
  46. Roberts PA, Thomason IJ, McKinney HE (1981) Influence of nonhosts, Crucifers, and fungal parasites on field populations of Heterodera schachtii. J Nematol 13:164–171PubMedPubMedCentralGoogle Scholar
  47. Rusholme RL, Higgins EE, Walsh JA, Lydiate DJ (2007) Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 88:3177–3186CrossRefPubMedGoogle Scholar
  48. Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91CrossRefPubMedGoogle Scholar
  49. Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E (2008) Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117:759–767CrossRefPubMedGoogle Scholar
  50. Shattuck V (1992) The biology, epidemiology, and control of turnip mosaic virus. Hortic Rev 14:199–238Google Scholar
  51. Shen Y, Diener AC (2013) Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 9:e1003525CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, Kishida Y, Kohara M, Takahashi C, Tsuruoka H, Wada T, Sakai T, Isobe S (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232CrossRefPubMedPubMedCentralGoogle Scholar
  53. Shimizu M, Fujimoto R, Ying H, Pu ZJ, Ebe Y, Kawanabe T, Saeki N, Taylor JM, Kaji M, Dennis ES, Okazaki K (2014) Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol Biol 85:247–257CrossRefPubMedGoogle Scholar
  54. Shimizu M, Pu ZJ, Kawanabe T, Kitashiba H, Matsumoto S, Ebe Y, Sano M, Funaki T, Fukai E, Fujimoto R, Okazaki K (2015) Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor Appl Genet 128:119–130CrossRefPubMedGoogle Scholar
  55. Singh D, Dhar S, Yadava DK (2011) Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in crucifers. Curr Microbiol 63:551–560CrossRefPubMedGoogle Scholar
  56. Soengas P, Hand P, Vicente JG, Pole JM, Pink DA (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645CrossRefPubMedGoogle Scholar
  57. Stirling GR, Stanton JM, Marshall JW (1992) The importance of plant-parasitic nematodes to Australian and New Zealand agriculture. Australas Plant Pathol 21:104CrossRefGoogle Scholar
  58. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002CrossRefPubMedGoogle Scholar
  59. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319CrossRefPubMedPubMedCentralGoogle Scholar
  60. Taha AH, Raski DJ (1969) Interrelationships between root-nodule bacteria, plant-parasitic nematodes and their leguminous host. J Nematol 1:201–211PubMedPubMedCentralGoogle Scholar
  61. Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology 92:105–111CrossRefPubMedGoogle Scholar
  62. Thierfelder A, Hackenberg E, Nichterlein K et al (1991) Development of nematode-resistant rapeseed genotypes via interspecific hybridization. In: Proceedings of the GCIRC 8th international rapeseed congress, pp 269–273Google Scholar
  63. Tomlinson J (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681CrossRefGoogle Scholar
  64. Tonu NN, Doullah MA-u, Shimizu M, Karim MM, Kawanabe T, Fujimoto R, Okazaki K (2013) Comparison of positions of QTLs conferring resistance to Xanthomonas campestris; pv. campestris; in Brassica oleracea. Amer J Plant Sci 04:11–20CrossRefGoogle Scholar
  65. Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629CrossRefPubMedGoogle Scholar
  66. Vicente JG, Conway J, Roberts SJ, Taylor JD (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499CrossRefPubMedGoogle Scholar
  67. Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18CrossRefPubMedGoogle Scholar
  68. Voorrips RE, Jongerius MC, Kanne HJ (1997) Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94:75–82CrossRefPubMedGoogle Scholar
  69. Voss A, Lühs WW, Snowdon RJ, Friedt W (1999) Development and molecular characterisation of nematode-resistant rapeseed (Brassica napus L.). In: Mugnozza GTS, Porceddu E, Pagnotta MA (eds) Genetics and breeding for crop quality and resistance: proceedings of the XV EUCARPIA congress, Viterbo, Italy, September 20–25, 1998. Springer, Dordrecht, pp 195–202CrossRefGoogle Scholar
  70. Walsh J, Sharpe A, Jenner C, Lydiate D (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99:1149–1154CrossRefGoogle Scholar
  71. Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300CrossRefPubMedGoogle Scholar
  72. Williams PH, Staub T, Sutton JC (1972) Inheritance of resistance in cabbage to black rot. Phytopathology 62:247–252Google Scholar
  73. Wubben MJ 2nd, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant-Microbe Interact 14:1206–1212CrossRefPubMedGoogle Scholar
  74. Xu L, Jiang QW, Wu J, Wang Y, Gong YQ, Wang XL, Limera C, Liu LW (2014) Identification and molecular mapping of the RsDmR locus conferring resistance to downy mildew at seedling stage in radish (Raphanus sativus L.). J Integr Agr 13:2362–2369CrossRefGoogle Scholar
  75. Yoshikawa H (1993) Studies on breeding of clubroot resistance in cole crops. Bull Natl Res Inst Veg Ornam Plants Tea Jpn Ser A 7:1–165Google Scholar
  76. Yu X, Choi SR, Ramchiary N, Miao X, Lee SH, Sun HJ, Kim S, Ahn CH, Lim YP (2013) Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait. Theor Appl Genet 126:2553–2562CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Molecular Genetics and Genomics Laboratory, Department of HorticultureChungnam National UniversityDaejeonKorea

Personalised recommendations