Genetic Profile of Glucosinolate Biosynthesis

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Recent advances in science have clarified the biosynthesis pathway and functional role of secondary metabolites. They play a major role not only for completion of the plant life cycle but also for communication with other organisms. In Brassicaceae, including radish, the most well-characterized secondary metabolite is glucosinolate. Glucosinolates are sulfur-containing metabolite and their associated degradation products have distinctive benefits for human diet and defense against pests. Plants produce approximately 200 types of different glucosinolates and those from different species show great diversity, with their contents being affected by the environment, cultivation conditions, and genetic background. The profile of glucosinolates in radish is attractive, but its biosynthesis pathway remains unclear. Here, we highlight recent progress in glucosinolate research of model plant Arabidopsis thaliana . To compare researches on glucosinolate between radish and A. thaliana, we further discuss with specificity the nature of glucosinolate in radish.

References

  1. Andreasson E, Jorgensen LB, Hoglund AS, Rask L, Meijer J (2001) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol 127:1750–1763CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RCH, Morandini P, Aarts MGM, Bovy A (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3:e2068CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beevi SS, Mangamoori LN, Dhand V, Ramakrishna DS (2009) Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L. Foodborne Pathog Dis 6:129–136CrossRefPubMedGoogle Scholar
  5. Bennett RN, Mellon FA, Kroon PA (2004) Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agric Food Chem 52:428–438CrossRefPubMedGoogle Scholar
  6. Bennett RN, Rosa EA, Mellon FA, Kroon PA (2006) Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). J Agric Food Chem 54:4005–4015CrossRefPubMedGoogle Scholar
  7. Bjerg B, Sørensen H (1987) Quantitative analysis of glucosinolates and HPLC of intact glucosinolates. In: Wathelet J-P (ed.) Glucosinolates in Rapeseeds: analytical Aspects, Martinus Nijhoff Publishers, Dordrecht, Netherlands, pp. 125–150Google Scholar
  8. Carlson DG, Daxenbichler ME, Vanetten CH, Hill CB, Williams PH (1985) Glucosinolates in radish cultivars. J Am Soc Hortic Sci 110:634–638Google Scholar
  9. Chen SX, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937CrossRefPubMedGoogle Scholar
  10. Ciska E, Honke J, Kozlowska H (2008) Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard, red radish, white radish, and rapeseed. J Agric Food Chem 56:9087–9093CrossRefPubMedGoogle Scholar
  11. Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310–325CrossRefGoogle Scholar
  12. Curto G, Dallavalle E, Lazzeri L (2005) Life cycle duration of Meloidogyne incognita and host status of Brassicaceae and Capparaceae selected for glucosinate content. Nematology 7:203–212CrossRefGoogle Scholar
  13. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51CrossRefPubMedGoogle Scholar
  14. Field B, Cardon G, Traka M, Botterman J, Vancanneyt G, Mithen R (2004) Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant Physiol 135:828–839CrossRefPubMedPubMedCentralGoogle Scholar
  15. Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828CrossRefPubMedGoogle Scholar
  16. Gigolashvili T, Engqvist M, Yatusevich R, Muller C, Flugge UI (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642CrossRefPubMedGoogle Scholar
  17. Gigolashvili T, Yatusevich R, Rollwitz I, Humphry M, Gershenzon J, Flugge UI (2009) The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21:1813–1829CrossRefPubMedPubMedCentralGoogle Scholar
  18. Graser G, Schneider B, Oldham NJ, Gershenzon J (2000) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch Biochem Biophys 378:411–419CrossRefPubMedGoogle Scholar
  19. Graser G, Oldham NJ, Brown PD, Temp U, Gershenzon J (2001) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry 57:23–32CrossRefPubMedGoogle Scholar
  20. Griffiths DW, Deighton N, Birch AN, Patrian B, Baur R, Stadler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57:693–700CrossRefPubMedGoogle Scholar
  21. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100CrossRefPubMedGoogle Scholar
  22. Grubb CD, Zipp BJ, Kopycki J, Schubert M, Quint M, Lim EK, Bowles DJ, Pedras MS, Abel S (2014) Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis. Plant J 79:92–105CrossRefPubMedGoogle Scholar
  23. Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276:11078–11085CrossRefPubMedGoogle Scholar
  24. Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50:902–910CrossRefPubMedGoogle Scholar
  25. Hansen BG, Kerwin RE, Ober JA, Lambrix VM, Mitchell-Olds T, Gershenzon J, Halkier BA, Kliebenstein DJ (2008) A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol 148:2096–2108CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hori K, Ohisa N, Suzuki M, Sato T, Kikawa A (1999) Chemical structure and quantitative determination of mustard oil in Shibori Daikon (Studies on special food resources in Akita part I). J Jpn Soc Food Sci 46:528–534 (In Japanese)CrossRefGoogle Scholar
  29. Ishida M, Nagata M, Ohara T, Kakizaki T, Hatakeyama K, Nishio T (2012) Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breed Sci 62:63–70CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ishida M, Kakizaki T, Morimitsu Y, Ohara T, Hatakeyama K, Yoshiaki H, Kohori J, Nishio T (2015) Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.). Theor Appl Genet 128:2037–2046CrossRefPubMedGoogle Scholar
  32. Ishii G (1991) Glucosinolate in Japanese Radish, Raphanus-Sativus L. JARQ 24:273–279Google Scholar
  33. Ishii G, Saijo R, Nagata M (1989) The difference of glucosinolate content in different cultivar of daikon roots (Raphanus sativus L.). J Jpn Soc Food Sci 36:739–742 (In Japanese)CrossRefGoogle Scholar
  34. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585CrossRefPubMedGoogle Scholar
  35. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127CrossRefPubMedGoogle Scholar
  36. Kakizaki T, Kitashiba H, Zou Z, Li F, Fukino N, Ohara T, Nishio T, Ishida M (2017) A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant Physiol 173:1583–1593CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kissen R, Pope TW, Grant M, Pickett JA, Rossiter JT, Powell G (2009) Modifying the alkylglucosinolate profile in Arabidopsis thaliana alters the tritrophic interaction with the herbivore Brevicoryne brassicae and parasitoid Diaeretiella rapae. J Chem Ecol 35:958–969CrossRefPubMedGoogle Scholar
  38. Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001a) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T (2001b) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–693CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51:1062–1076CrossRefPubMedGoogle Scholar
  41. Knill T, Schuster J, Reichelt M, Gershenzon J, Binder S (2008) Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol 146:1028–1039CrossRefPubMedPubMedCentralGoogle Scholar
  42. Knill T, Reichelt M, Paetz C, Gershenzon J, Binder S (2009) Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant Mol Biol 71:227–239CrossRefPubMedPubMedCentralGoogle Scholar
  43. Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608CrossRefPubMedPubMedCentralGoogle Scholar
  44. Koroleva OA, Gibson TM, Cramer R, Stain C (2010) Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation. Plant J 64:456–469CrossRefPubMedGoogle Scholar
  45. Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, Mitchell-Olds T (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–1088CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chapple C (2012) Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis. Plant J 72:411–422CrossRefPubMedGoogle Scholar
  47. Li J, Hansen BG, Ober JA, Kliebenstein DJ, Halkier BA (2008) Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol 148:1721–1733CrossRefPubMedPubMedCentralGoogle Scholar
  48. Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–2049CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the CS lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777CrossRefPubMedGoogle Scholar
  50. Mithen R, Clarke J, Lister C, Dean C (1995) Genetics of aliphatic glucosinolates. III. Side-chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74:210–215CrossRefGoogle Scholar
  51. Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T (2015) The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep 5:10835CrossRefPubMedPubMedCentralGoogle Scholar
  52. Neal CS, Fredericks DP, Griffiths CA, Neale AD (2010) The characterisation of AOP2: a gene associated with the biosynthesis of aliphatic alkenyl glucosinolates in Arabidopsis thaliana. BMC Plant Biol 10:170CrossRefPubMedPubMedCentralGoogle Scholar
  53. Newkirk RW, Classen HL (2002) The effects of toasting canola meal on body weight, feed conversion efficiency, and mortality in broiler chickens. Poult Sci 81:815–825CrossRefPubMedGoogle Scholar
  54. Ozawa Y, Kawakishi S, Uda Y, Maeda Y (1990a) Isolation and identification of a novel beta-carboline derivative in salted radish roots, Raphanus sativus L. Agric Biol Chem 54:1241–1245Google Scholar
  55. Ozawa Y, Uda Y, Kawakishi S (1990b) Generation of a beta-carboline derivative, the yellowish precursor of processed radish roots, from 4-methylthio-3-butenyl isothiocyanate and L-tryptophan. Agric Biol Chem 54:1849–1851Google Scholar
  56. Parkin I, Magrath R, Keith D, Sharpe A, Mithen R, Lydiate D (1994) Genetics of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72:594–598CrossRefGoogle Scholar
  57. Piotrowski M, Schemenewitz A, Lopukhina A, Muller A, Janowitz T, Weiler EW, Oecking C (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725CrossRefPubMedGoogle Scholar
  58. Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113CrossRefPubMedGoogle Scholar
  59. Sawada Y, Kuwahara A, Nagano M, Narisawa T, Sakata A, Saito K, Hirai MY (2009a) Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol 50:1181–1190CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sawada Y, Toyooka K, Kuwahara A, Sakata A, Nagano M, Saito K, Hirai MY (2009b) Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579–1586CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S (2006) branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell 18:2664–2679CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sonderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2:e1322CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sonderby IE, Burow M, Rowe HC, Kliebenstein DJ, Halkier BA (2010) A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol 153:348–363CrossRefPubMedPubMedCentralGoogle Scholar
  64. Takahashi A, Yamada T, Uchiyama Y, Hayashi S, Kumakura K, Takahashi H, Kimura N, Matsuoka H (2015) Generation of the antioxidant yellow pigment derived from 4-methylthio-3-butenyl isothiocyanate in salted radish roots (takuan-zuke). Biosci Biotechnol Biochem 79:1512–1517CrossRefPubMedGoogle Scholar
  65. Textor S, Gershenzon J (2008) Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8:149–170CrossRefGoogle Scholar
  66. Textor S, de Kraker JW, Hause B, Gershenzon J, Tokuhisa JG (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144:60–71CrossRefPubMedPubMedCentralGoogle Scholar
  67. Thacker PA, Newkirk RW (2005) Performance of growing-finishing pigs fed barley-based diets containing toasted or non-toasted canola meal. Can J Anim Sci 85:53–59CrossRefGoogle Scholar
  68. Ueda H, Nishiyama C, Shimada T, Koumoto Y, Hayashi Y, Kondo M, Takahashi T, Ohtomo I, Nishimura M, Hara-Nishimura I (2006) AtVAM3 is required for normal specification of idioblasts, myrosin cells. Plant Cell Physiol 47:164–175CrossRefPubMedGoogle Scholar
  69. Wang Y, Pan Y, Liu Z, Zhu X, Zhai L, Xu L, Yu R, Gong Y, Liu L (2013) De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. BMC Genom 14:836CrossRefGoogle Scholar
  70. Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3:1687–1701CrossRefPubMedGoogle Scholar
  71. Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270CrossRefPubMedGoogle Scholar
  72. Yamada K, Hasegawa T, Minami E, Shibuya N, Kosemura S, Yamamura S, Hasegawa KI (2003) Induction of myrosinase gene expression and myrosinase activity in radish hypocotyls by phototropic stimulation. J Plant Physiol 160:255–259CrossRefPubMedGoogle Scholar
  73. Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish Raphanus sativus L. PLoS One 8:e53541CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Vegetable and Floriculture ScienceNAROTsuJapan
  2. 2.Institute of Vegetable and Floriculture ScienceNAROTsukubaJapan

Personalised recommendations