Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392 (1954)
MathSciNet
CrossRef
MATH
Google Scholar
Arora, S., Hazan, E., Kale, S.: Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. In: 46th IEEE FOCS, pp. 339–348 (2005)
Google Scholar
Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theor. Comp. 8, 121–164 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization. Wiley, Hoboken (2004)
MATH
Google Scholar
Ball, K.: An elementary introduction to modern convex geometry. In: Silvio, L. (ed.) Flavors of Geometry, pp. 1–58. University Press, Cambridge (1997)
Google Scholar
Betke, U.: Relaxation, new combinatorial and polynomial algorithms for the linear feasibility problem. Discrete Comput. Geom. 32(3), 317–338 (2004)
MathSciNet
CrossRef
MATH
Google Scholar
Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer Publishing Company Inc., Heidelberg (2014)
CrossRef
MATH
Google Scholar
Chubanov, S.: A strongly polynomial algorithm for linear systems having a binary solution. Math. Program. 134(2), 533–570 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Chubanov, S.: A polynomial projection algorithm for linear feasibility problems. Math. Program. 153(2), 687–713 (2015)
MathSciNet
CrossRef
MATH
Google Scholar
Christiano, P., Kelner, J.A., Madry, A., Spielman, D.A., Teng, S.: Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, New York, NY, USA, pp. 273–282 (2011)
Google Scholar
Dantzig, G.B.: Maximization of a linear function of variables subject to linear inequalities. In: Activity Analysis of Production and Allocation, Cowles Commission Monograph, vol. 13, pp. 339–347. John Wiley & Sons Inc., Chapman & Hall Ltd., New York (1951)
Google Scholar
Dunagan, J., Vempala, S.: A simple polynomial-time rescaling algorithm for solving linear programs. Math. Program. 114(1), 101–114 (2006)
MathSciNet
CrossRef
MATH
Google Scholar
Dadush, D., Végh, L.A., Zambelli, G.: Rescaling algorithms for linear programming - part I: conic feasibility. CoRR, abs/1611.06427 (2016)
Google Scholar
Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM J. Comput. 37(2), 630–652 (2007)
MathSciNet
CrossRef
MATH
Google Scholar
Hačijan, L.G.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244(5), 1093–1096 (1979)
MathSciNet
MATH
Google Scholar
John, F.: Extremum problems with inequalities as subsidiary conditions. In: Friedrichs, K.O., Neugebauer, O.E., Stoker, J.J. (eds.) Studies and Essays presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience Publishers, New York (1948)
Google Scholar
Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)
MathSciNet
CrossRef
MATH
Google Scholar
Klee, V., Minty, G.: How good is the simplex algorithm? In: Inequalities, III (Proceedings Third Symposium, UCLA, 1969; Dedicated to the Memory of Theodore S. Motzkin), pp. 159–175. Academic Press, New York (1972)
Google Scholar
Lee, Y., Sinford, A.: A new polynomial-time algorithm for linear programming (2015). https://arxiv.org/abs/1312.6677
Madry, A.: Faster approximation schemes for fractional multicommodity flow problems via dynamic graph algorithms. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, New York, NY, pp. 121–130 (2010)
Google Scholar
Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16(1), 235–249 (2005)
MathSciNet
CrossRef
MATH
Google Scholar
Peña, J., Soheili, N.: A smooth perceptron algorithm. SIAM J. Optim. 22(2), 728–737 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Peña, J., Soheili, N.: A deterministic rescaled perceptron algorithm. Math. Program. 155(1–2), 497–510 (2016)
MathSciNet
CrossRef
MATH
Google Scholar
Plotkin, S.A., Shmoys, D.B., Tardos, E.: Fast approximation algorithms for fractional packing and covering problems. Math. Oper. Res. 20(2), 257–301 (1995)
MathSciNet
CrossRef
MATH
Google Scholar
Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience Series in Discrete Mathematics. John Wiley and Sons, Inc., New York (1986)
MATH
Google Scholar
Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)
MATH
Google Scholar
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. University Press, Cambridge (2011)
CrossRef
MATH
Google Scholar