Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the 28th STOC, pp. 99–108. ACM (1996)
Google Scholar
Aharonov, D., Regev, O.: Lattice problems in NP cap conp. J. ACM 52(5), 749–765 (2005)
MathSciNet
CrossRef
MATH
Google Scholar
Bohman, T.: A sum packing problem of erdös and the conway-guy sequence. Proc. AMS 124(12), 3627–3636 (1996)
CrossRef
MATH
Google Scholar
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1997)
MATH
Google Scholar
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, vol. 2, pp. 122–125. Springer, Heidelberg (2012)
MATH
Google Scholar
Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors, pp. 469–477 (2007)
Google Scholar
John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, 8 January 1948, pp. 187–204. Interscience Publishers Inc., New York (1948)
Google Scholar
Karmarkar, N., Karp, R.: The differencing method of set partitioning. Technical report, CS Division, UC Berkeley (1982). http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-83-113.pdf
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)
CrossRef
MATH
Google Scholar
Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)
MathSciNet
CrossRef
MATH
Google Scholar
Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM (1986)
Google Scholar
Lovász, L.: Geometric Algorithms and Algorithmic Geometry. American Mathematical Society (1990)
Google Scholar
Lunnon, W.: Integer sets with distinct subset-sums. Math. Comput. 50(181), 297–320 (1988)
MathSciNet
CrossRef
MATH
Google Scholar
Lev, V., Yuster, R.: On the size of dissociated bases. Electr. J. Comb. 18(1), P117 (2011)
MathSciNet
MATH
Google Scholar
Matousek, J.: Lectures on Discrete Geometry. Springer, New York (2002)
CrossRef
MATH
Google Scholar
Mertens, S.: The easiest hard problem: number partitioning. Comput. Complex. Stat. Phys. 125(2), 125–139 (2006)
MathSciNet
MATH
Google Scholar
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post-quantum Cryptography, pp. 147–191. Springer (2009)
Google Scholar
Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley Inc., New York (1990)
MATH
Google Scholar
Nguyen, P., Vallée, B.: The lll algorithm. In: Nguyen, P., Vallée, B. (eds.) Information Security and Cryptography. Springer, Heidelberg (2010)
Google Scholar
Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)
MathSciNet
CrossRef
MATH
Google Scholar
Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)
MathSciNet
CrossRef
MATH
Google Scholar
Woeginger, G., Yu, Z.: On the equal-subset-sum problem. Inf. Process. Lett. 42(6), 299–302 (1992)
MathSciNet
CrossRef
MATH
Google Scholar