Secondary Metabolites from Pochonia chlamydosporia and Other Species of Pochonia

  • Xue-Mei NiuEmail author
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


This chapter aims to present classification, occurrence, biological activities and functions of 34 secondary metabolites from Pochonia chlamydosporia (= Verticillium chlamydosporium) and 105 secondary metabolites from the other species of Pochonia reported up to the end of 2015. The secondary metabolites from P. chlamydosporia mainly include resorcylic acid lactone, pyranones, alkaloid and phenolics, while those from the other species of Pochonia belong to polycyclic aromatic compounds, nonaromatic polyketides, phenol-terpenoid hybrids, β-carotene-type neurosporaxanthin, pentanorlanostane triterpenoids, dahiane type diterpenoids, cyclodepsipeptides, verticillin-type diketopiperazines, linear lipopeptide and polyhydroxylated pyrrolizidine. Many of these natural products have attracted much attention for their fascinating molecular architectures and attractive biological activities such as antibacterial, antifungal, antioxidative activities, anti-malarial, antinematicidal, antivirus, antitumour, and other activities.


  1. Adachi, H., Doi, H., Kasahara, Y., et al. (2015). Asteltoxins from the entomopathogenic fungus Pochonia bulbillosa 8-H-28. Journal of Natural Products, 78, 1730–1734.PubMedCrossRefGoogle Scholar
  2. Aldridge, D. C., Borrow, A., Foster, R. G., et al. (1972). Metabolites of Nectria coccinea. Journal of the Chemical Society, Perkin Transactions, 1, 2136–2141.CrossRefGoogle Scholar
  3. Amagata, T., Minoura, K., & Numata, A. (1998). Cytotoxic metabolites produced by a fungal strain from a Sargassum alga. The Journal of Antibiotics, 51, 432–434.PubMedCrossRefGoogle Scholar
  4. Angawi, R. F., Swenson, D. C., Gloer, J. B., et al. (2003). Lowdenic acid: A new antifungal polyketide-derived metabolite from a new fungicolous Verticillium sp. Journal of Natural Products, 66, 1259–1262.PubMedCrossRefGoogle Scholar
  5. Arai, M., Yamamoto, K., Namatame, I., et al. (2003). New monordens produced by amidepsine-producing fungus Humicola sp. FO-2942. The Journal of Antibiotics, 56, 526–532.PubMedCrossRefGoogle Scholar
  6. Argoudelis, A. D., & Zieserl, J. F. (1966). The structure of U-13,933, a new antibiotic. Tetrahedron Letters, 18, 1969–1973.PubMedCrossRefGoogle Scholar
  7. Ayer, W. A., & Peña-Rodriguez, L. (1987). Minor metabolites of Monocillium nordinii. Phytochemistry, 26, 1353–1355.CrossRefGoogle Scholar
  8. Ayer, W. A., Lee, S. P., Tsuneda, A., et al. (1980). The isolation, identification, and bioassay of the antifungal metabolites produced by Monocillium nordinii. Canadian Journal of Microbiology, 26, 766–773.CrossRefGoogle Scholar
  9. Azumi, M., Ishidoh, K., Kinoshita, H., et al. (2008). Aurovertins F-H from the entomopathogenic fungus Metarhizium anisopliae. Journal of Natural Products, 71, 278–280.PubMedCrossRefGoogle Scholar
  10. Baldwin, C., Weaver, L., Brooker, R., et al. (1964). Biological and chemical properties of aurovertin, a metabolic product of Calcarisporium abuscula. Lloydia, 27, 88–95.Google Scholar
  11. Bal-Tembe, S., Kundu, S., Roy, K., et al. (1999). Activity of the ilicicolins against plant pathogenic fungi. Pesticide Science, 55, 645–647.CrossRefGoogle Scholar
  12. Birch, A. J., Hirkinshaw, J. H., Chaplen, P., et al. (1969). The structures of canescins-A and -B. Australian Journal of Chemistry, 22, 1933–1941.CrossRefGoogle Scholar
  13. Bloch, P., & Tamm, C. (1976). Pseurotin, a new metabolite of Pseudeurotium ovalis Stolk having an unusual hetero-spirocyclic system. Helvetica Chimica Acta, 59, 133–137.PubMedCrossRefGoogle Scholar
  14. Boot, C. M., Gassner, N. C., Compton, J. E., et al. (2007). Pinpointing pseurotins from a marine-derived Aspergillus as tools for chemical genetics using a synthetic lethality yeast screen. Journal of Natural Products, 70, 1672–1675.PubMedCrossRefGoogle Scholar
  15. Boros, C., Hamilton, S. M., Katz, B., et al. (1994). Comparison of balanol from Verticillium balanoides and ophiocordin from Cordyceps ophioglossoides. The Journal of Antibiotics, 47, 1010–1016.PubMedCrossRefGoogle Scholar
  16. Brachmann, A. O., Brameyer, S., Kresovic, D., et al. (2013). Pyrones as bacterial signaling molecules. Nature Chemical Biology, 9, 573–578.PubMedCrossRefGoogle Scholar
  17. Brady, S. F., Singh, M. P., Janso, J. E., et al. (2000). Guanacastepene, a fungal-derived diterpene antibiotic with a new carbon skeleton. Journal of the American Chemical Society, 122, 2116–2117.CrossRefGoogle Scholar
  18. Cagnoli-Bellavita, N., Ceccherelli, P., Fringuelli, R., et al. (1975). Ascochlorin: a terpenoid metabolite from Acremonium luzulae. Phytochemistry, 14, 807.CrossRefGoogle Scholar
  19. Cole, R. J., Kirksey, J. W., Cutler, H. G., et al. (1974). Toxic effects of oosporein from Chaetomium trilatelare. Journal of Agricultural and Food Chemistry, 22, 517–522.PubMedCrossRefGoogle Scholar
  20. Delmotte, P., & Delmotte-Plaquee, J. (1953). A new antifungal substance of fungal origin. Nature, 171, 344.PubMedCrossRefGoogle Scholar
  21. Ebel, R., & Lardy, H. (1975). Influence of aurovertin on mitochondrial ATPase activity. The Journal of Biological Chemistry, 250, 4992–4995.PubMedGoogle Scholar
  22. Ellestad, G. A., RHJr, E., & Kunstmann, M. P. (1969). Some new terpenoid metabolites from an unidentified Fusarium species. Tetrahedron, 25, 1323–1334.PubMedCrossRefGoogle Scholar
  23. Ellestad, G. A., Lovell, F. M., Perkinson, N. A., et al. (1978). New zearalenone related macrolides and isocoumarins from an unidentified fungus. The Journal of Organic Chemistry, 43, 2339–2343.CrossRefGoogle Scholar
  24. Evans, G., & White, N. H. (1966). Radicicolin and radicicol, two new antibiotics produced by Cylindrocarpon radicicola. Transactions of the British Mycological Society, 49, 563–576.CrossRefGoogle Scholar
  25. Evans, R. H., Ellested, G. A., & Kunstmann, M. P. (1969). Two new metabolites from an unidentified Nigrospora species. Tetrahedron Letters, 10, 1791–1794.CrossRefGoogle Scholar
  26. Fairlamb, I. J., & McGlacken, G. P. (2005). 2-pyrones natural products and mimetics: Isolation, characterisation and biological activity. Natural Product Reports, 22, 369–385.PubMedCrossRefGoogle Scholar
  27. Fang, S., Chen, L., Yu, M., et al. (2015). Synthesis, antitumor activity, and mechanism of action of 6-acrylic phenethyl ester-2-pyranone derivatives. Organic & Biomolecular Chemistry, 13, 4714–4726.CrossRefGoogle Scholar
  28. Firáková, S., Proksa, B., & Šturdíková, M. (2007). Biosynthesis and biological activity of enniatins. Pharmazie, 62, 563–568.PubMedGoogle Scholar
  29. Grove, J. F. (1984). 23, 24, 25, 26, 27-Pentanorlanost-8-en-3β,22-diol from Verticillium lecanii. Phytochemistry, 23, 1721–1723.CrossRefGoogle Scholar
  30. Guo, H., Feng, T., Li, Z. H., et al. (2013). Ten new aurovertins from cultures of the basidiomycete Albatrellus confluens. Natural Products and Bioprospecting, 3, 8–13.PubMedCentralCrossRefGoogle Scholar
  31. Hashida, J., Niitsuma, M., Iwatsuki, M., et al. (2010). Pyrenocine I, a new pyrenocine analogue produced by Paecilomyces sp. FKI-3573. The Journal of Antibiotics, 63, 559–561.PubMedCrossRefGoogle Scholar
  32. Hauser, D., Loosli, H. R., & Niklaus, P. (1972). Isolierung von 1lα, 1l′α-Dihydroxychaetocin aus Verticillium tenerum. Helvetica Chimica Acta, 55, 2182–2187.PubMedCrossRefGoogle Scholar
  33. Hayakawa, S., Minato, H., & Katagiri, K. (1971). The ilicicolins, antibiotics from Cylindrocladium ilicicola. The Journal of Antibiotics, 24, 653–654.PubMedCrossRefGoogle Scholar
  34. Hellwig, V., Mayer-Bartschmid, A., Müller, H., et al. (2003). Pochonins A-F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. Journal of Natural Products, 66, 829–837.PubMedCrossRefGoogle Scholar
  35. Huang, T. C., Chang, H. Y., Hsu, C. H., et al. (2008). Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. Journal of Proteome Research, 7, 1433–1444.PubMedCrossRefGoogle Scholar
  36. Isaka, M., Kongsaeree, P., & Thebtaranonth, Y. (2001). Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. II. Structure elucidation. The Journal of Antibiotics, 54, 36–43.PubMedCrossRefGoogle Scholar
  37. Isaka, M., Palasarn, S., Rachtawee, P., et al. (2005). Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Organic Letters, 7, 2257–2260.PubMedCrossRefGoogle Scholar
  38. Isaka, M., Yangchum, A., Supothina, S., et al. (2015). Ascochlorin derivatives from the leafhopper pathogenic fungus Microcera sp. BCC 17074. The Journal of Antibiotics, 68, 47–51.PubMedCrossRefGoogle Scholar
  39. Jirakkakul, J., Punya, J., Pongpattanakitshote, S., et al. (2008). Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 154, 995–1006.PubMedCrossRefGoogle Scholar
  40. Johnson, K. M., Swenson, L., Opipari, A. W., Jr., et al. (2009). Mechanistic basis for differential inhibition of the F1FO-ATPase by aurovertin. Biopolymers, 91, 830–840.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Joshi, B. K., Gloer, J. B., & Wicklow, D. T. (1999). New verticillin and glisoprenin analogues from Gliocladium catenulatum, a mycoparasite of Aspergillus flavus sclerotia. Journal of Natural Products, 62, 730–733.PubMedCrossRefGoogle Scholar
  42. Kato, A., Kato, N., Adachi, I., et al. (2007). Isolation of glycosidase-inhibiting hyacinthacines and related alkaloids from Scilla socialis. Journal of Natural Products, 70, 993–997.PubMedCrossRefGoogle Scholar
  43. Kawagishi, H., Sato, H., Sakamura, S., et al. (1984). Isolation and structure of a new diprenyl phenol, colletorin B produced by Cephalosporium diospyri. Agricultural and Biological Chemistry, 48, 1903–1904.Google Scholar
  44. Khambay, B., Bourne, J., Cameron, S., et al. (2000). A nematicidal metabolite from Verticillium chlamydosporium. Pest Management Science, 56, 1098–1099.CrossRefGoogle Scholar
  45. Kim, J. C., Choi, G. J., Kim, H. T., et al. (2000). Pathogenicity and pyrenocine production of Curvularia inaequalis isolated from zoysia grass. Plant Disease, 84, 684–688.CrossRefGoogle Scholar
  46. Kim, J. C., Choi, G. J., Park, J. H., et al. (2001). Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Management Science, 57, 554–559.PubMedCrossRefGoogle Scholar
  47. Koehn, F. E., Kirsch, D. R., Feng, X., et al. (2008). A cell wall-active lipopeptide from the fungus Pochonia bulbillosa. Journal of Natural Products, 71, 2045–2048.PubMedCrossRefGoogle Scholar
  48. Kosuge, Y., Suzuki, A., Hirota, S., & Tamura, S. (1973). Structure of colletochlorin from Colletotrichum nicotianae. Agricultural and Biological Chemistry, 37, 455–456.CrossRefGoogle Scholar
  49. Krasnoff, S., & Gupta, S. (1994). Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. Journal of Chemical Ecology, 20, 293–302.PubMedCrossRefGoogle Scholar
  50. Krohn, K., Sohrab, M. H., Draeger, S., et al. (2008). New pyrenocines from an endophytic fungus. Natural Product Communications, 3, 1689–1692.Google Scholar
  51. Kruger, G. J., Steyn, P. S., Vleggaar, R., et al. (1979). X-ray crystal structure of asteltoxin, a novel mycotoxin from Aspergillus stellatus Curzi. Journal of the Chemical Society, Chemical Communications, 10, 441–442.CrossRefGoogle Scholar
  52. Kulanthaivel, P., Hallock, Y. F., Boros, C., et al. (1993). Balanol: A novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. Journal of the American Chemical Society, 115, 6452–6453.CrossRefGoogle Scholar
  53. Lewis, C., Staunton, J., & Sunter, D. (1988). Biosynthesis of canescin, a metabolite of Aspergillus malignus: Incorporation of methionine, acetate, succinate, and isocoumarin precursors, labelled with deuterium and carbon-13. Journal of the Chemical Society, 4, 747–754.Google Scholar
  54. Liu, F., Liu, Q., Yang, D., et al. (2011). Verticillin A overcomes apoptosis resistance in human colon carcinoma through DNA methylation-dependent upregulation of BNIP3. Cancer Research, 71, 6807–6816.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liu, Y. Z., CH, L., & Shen, M. (2014). Guanacastane-type diterpenoids from Coprinus plicatilis. Phytochemistry Letters, 7, 161–164.CrossRefGoogle Scholar
  56. Mao, X.-M., Zhan, Z.-J., Grayson, M. N., et al. (2015). Efficient biosynthesis of fungal polyketides containing the dioxabicyclo-octane ring system. Journal of the American Chemical Society, 137, 11904–11907.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Michel, K. H., Chaney, M. O., Jones, N. D., et al. (1974). Epipolythiopiperazinedione antibiotics from Penicillium turbatum. The Journal of Antibiotics, 27, 57–64.PubMedCrossRefGoogle Scholar
  58. Minato, H., Katayama, T., Hayakawa, S., et al. (1972). Identification of ilicicolins with ascochlorin and LL-Z 1272. The Journal of Antibiotics, 25, 315–316.PubMedCrossRefGoogle Scholar
  59. Minato, H., Matsumoto, M., & Katayama, T. (1973). Studies on the metabolites of Verticillium sp. structures of verticillins A, B, and C. Journal of the Chemical Society. Perkin Transactions 1, 17, 1819–1825.PubMedCrossRefGoogle Scholar
  60. Mirrington, R. N., Ritchie, E., Shoppee, C. W., et al. (1964). The constitution of radicicol. Tetrahedron Letters, 7, 365–370.CrossRefGoogle Scholar
  61. Mizuba, S., Lee, K., & Jiu, J. (1975). Three antimicrobial metabolites from Aspergillus caespitosus. Canadian Journal of Microbiology, 21, 1781–1787.PubMedCrossRefGoogle Scholar
  62. Molnár, I., Gibson, D. M., & Krasnoff, S. B. (2010). Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports, 27, 1241–1275.PubMedCrossRefGoogle Scholar
  63. Morris, R. A. C., Ewing, D. D. F., Whipps, J. M., et al. (1995). Antifungal hydroxymethyl-phenols from the mycoparasite Verticillium biguttatum. Phytochemistry, 39, 1043–1048.CrossRefGoogle Scholar
  64. Moulin, E., Zoete, V., Barluenga, S., et al. (2005). Synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. Journal of the American Chemical Society, 127, 6999–7004.PubMedCrossRefGoogle Scholar
  65. Moulin, E., Barluenga, S., Totzke, F., et al. (2006). Diversity-oriented synthesis of pochonins and biological evaluation against a panel of kinases. Chemistry – A European Journal, 12, 8819–8834. doi: 10.1002/chem.200600553.CrossRefGoogle Scholar
  66. Mulheirn, L., Beechey, R., & Leworthy, D. (1974). Aurovertin B, a metabolite of Calcarisporium arbuscula. Journal of the Chemical Society, Chemical Communications, 21, 874–876.CrossRefGoogle Scholar
  67. Nair, M. S. R., & Carey, S. T. (1980). Metabolites of pyrenomycetes XIII: Structure of (+)-hypothemycin, an antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Letters, 21, 2011–2012.CrossRefGoogle Scholar
  68. Nakajyo, S., Shimizu, K., Kometani, A., et al. (1983). On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in guinea-pig taenia coli. Japanese Journal of Pharmacology, 33, 573–582.PubMedCrossRefGoogle Scholar
  69. Nilanonta, C., Isaka, M., Chanphen, R., et al. (2003a). Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: Isolation and studies on precursor-directed biosynthesis. Tetrahedron, 59, 1015–1020.CrossRefGoogle Scholar
  70. Nilanonta, C., Isaka, M., Kittakoop, P., et al. (2003b). New Diketopiperazines from the entomopathogenic Fungus Verticillium hemipterigenum BCC 1449. The Journal of Antibiotics, 56, 647–651.PubMedCrossRefGoogle Scholar
  71. Nishiyama, S., Toshima, H., Kanai, H., et al. (1988). Total synthesis and the absolute configuration of aurovertin B, an acute neurotoxic metabolite. Tetrahedron, 44, 6315–6324.CrossRefGoogle Scholar
  72. Niu, X. M., Wang, Y. L., Chu, Y. S., et al. (2010). Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Agricultural and Food Chemistry, 58, 828–834.PubMedCrossRefGoogle Scholar
  73. Niwa, M., Ogiso, S., Endo, T., et al. (1980). Isolation and structure of citreopyrone, a metabolite of Penicillium citreo-viride Biourge. Tetrahedron Letters, 21, 4481–4482.CrossRefGoogle Scholar
  74. Nozawa, K., & Nakajima, S. (1979). Isolation of radicicol from Penicillium luteo-aurantium and meleagrin, a new metabolite, from Penicillium meleagrinum. Journal of Natural Products, 42, 374–377.CrossRefGoogle Scholar
  75. Ohshima, S., Yanagisawa, M., Katoh, A., et al. (1994). Fusarium merismoides CORDA NR 6356, the source of the protein kinase C inhibitor, azepinostatin taxonomy, yield improvement, fermentation and biological activity. The Journal of Antibiotics, 47, 639–647.PubMedCrossRefGoogle Scholar
  76. Owen, S. P., & Bhuyan, B. K. (1965). Biological properties of a new antibiotic, U-13,933. Antimicrobial Agents and Chemotherapy, 5, 804–807.PubMedGoogle Scholar
  77. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., et al. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34, 1037–1062.PubMedCrossRefGoogle Scholar
  78. Rukachaisirikul, V., Kaeobamrung, J., Panwiriyarat, W., et al. (2007). A new pyrone derivative from the endophytic fungus Penicillium paxilli PSU-A71. Chemical & Pharmaceutical Bulletin, 55, 1383–1384.CrossRefGoogle Scholar
  79. Saito, T., Suzuki, Y., Koyama, K., et al. (1988). Chetracin A and chaetocins B and C, three new epipolythiodioxopiperazines from Chaetomium spp. Chemical & Pharmaceutical Bulletin, 36, 1942–1956.CrossRefGoogle Scholar
  80. Sasaki, H., Hosokawa, T., Sawada, M., et al. (1974). Isolation and structure of ascochlorin and its analogs. Agricultural and Biological Chemistry, 38, 1463–1466.CrossRefGoogle Scholar
  81. Sato, H., Konoma, K., & Sakamura, S. (1979). Phytotoxins produced by onion pink root fungus Pyrenochaeta terrestris. Agricultural and Biological Chemistry, 43, 2409–2411.Google Scholar
  82. Sato, H., Konoma, K., Sakamura, S., et al. (1981). X-ray crystal structure of pyrenocine A, a phytotoxin from Pyrenochaeta terrestris. Agricultural and Biological Chemistry, 45, 795–797.Google Scholar
  83. Satre, M. (1981). The effect of asteltoxin and citreomontanine, two polyenic a-pyrone mycotoxins, on Escherichia coli adenosine triphosphatase. Biochemical and Biophysical Research Communications, 100, 267–274.PubMedCrossRefGoogle Scholar
  84. Schenke, D., Bottcher, C., Lee, J., & Scheel, D. (2011). Verticillin A is likely not produced by Verticillium sp. The Journal of Antibiotics, 64, 523–524.PubMedCrossRefGoogle Scholar
  85. Schmeda-Hirschmann, G., Hormazabal, E., Rodriguez, J. A., et al. (2008). Cycloaspeptide A and pseurotin a from the endophytic fungus Penicillium janczewskii. Zeitschrift für Naturforschung. Section C, 63, 383–388.Google Scholar
  86. Seephonkai, P., Isaka, M., Kittakoop, P., et al. (2004). A novel ascochlorin glycoside from the insect pathogenic fungus Verticillium hemipterigenum BCC 2370. The Journal of Antibiotics, 57, 10–16.PubMedCrossRefGoogle Scholar
  87. Shin, C.-G., An, D.-G., Song, H.-H., et al. (2009). Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. The Journal of Antibiotics, 62, 687–690.PubMedCrossRefGoogle Scholar
  88. Shinonaga, H., Kawamura, Y., Ikeda, A., et al. (2009a). The search for a hair-growth stimulant: New radicicol analogues as WNT-5A expression inhibitors from Pochonia chlamydosporia var. chlamydosporia. Tetrahedron Letters, 50, 108–110.CrossRefGoogle Scholar
  89. Shinonaga, H., Kawamura, Y., Ikeda, A., et al. (2009b). Pochonins K-P: New radicicol analogues from Pochonia chlamydosporia var. chlamydosporia and their WNT-5A expression inhibitory activities. Tetrahedron, 65, 3446–3453.CrossRefGoogle Scholar
  90. Shizuri, Y., Kosemura, S., Yamamura, S., et al. (1984). Biosynthesis of citreothiolactone, citreopyrone and pyrenocine B. Tetrahedron Letters, 25, 1583–1584.CrossRefGoogle Scholar
  91. Singh, S. B., Ball, R. G., Bills, G. F., et al. (1996). Chemistry and biology of cylindrols: Novel inhibitors of Ras farnesyl-protein transferase from Cylindrocarpon lucidum. The Journal of Organic Chemistry, 61, 7727–7737.PubMedCrossRefGoogle Scholar
  92. Sparace, S. A., Reeder, R. D., & Khanizadeh, S. (1987). Antibiotic activity of the pyrenocines. Canadian Journal of Microbiology, 33, 327–330.PubMedCrossRefGoogle Scholar
  93. Steiner, E., Kalamar, J., Charollais, E., et al. (1974). Recherches sur la biochimie des champignons inférieurs IX. Synthèse de précurseurs marqués et biosynthèse de la phoenicine et de ľoosporéine. Helvetica Chimica Acta, 57, 2377–2387.PubMedCrossRefGoogle Scholar
  94. Stob, M., Baldwin, R. S., Tuite, J., et al. (1962). Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae. Nature, 196, 1318.PubMedCrossRefGoogle Scholar
  95. Strunz, G. M., Heissner, C. J., Kakushima, M., et al. (1974). Metabolites of Hyalodendron sp.: Bisdethiodi (methylthio) hyalodendrin. Canadian Journal of Chemistry, 52, 325–326.CrossRefGoogle Scholar
  96. Supothina, S., Isaka, M., Kirtikara, K., et al. (2004). Enniatin production by the Entomopathogenic fungus Verticillium hemipterigenum BCC 1449. The Journal of Antibiotics, 57, 732–738.PubMedCrossRefGoogle Scholar
  97. Suzuki, A., Kanaoka, M., Isogai, A., et al. (1977). Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Letters, 18, 2167–2170.CrossRefGoogle Scholar
  98. Takamatsu, S., Rho, M. C., Masuma, R., et al. (1994). A novel testosterone 5α-reductase inhibitor, 8′,9′-dehydroascochiorin produced by Verticillium sp. FO-2787. Chemical & Pharmaceutical Bulletin, 42, 953–956.CrossRefGoogle Scholar
  99. Takatsuki, A., Tamura, G., & Arima, K. (1969). Antiviral and antitumor antibiotics. XIV. Effects of ascochlorin and other respiration inhibitors on multiplication of Newcastle disease virus in cultured cells. Applied Microbiology, 17, 825–829.PubMedPubMedCentralGoogle Scholar
  100. Takemoto, Y., Watanabe, H., Uchida, K., et al. (2005). Chemistry and biology of moverastins, inhibitors of cancer cell migration, produced by Aspergillus. Chemistry & Biology, 12, 1337–1347.CrossRefGoogle Scholar
  101. Tal, B., & Robeson, D. J. (1986). The production of pyrenocines A and B by a novel Alternaria species. Z Naturforsch C. Biosciences, 41, 1032–1036.Google Scholar
  102. Tamura, G., Suzuki, S., Takatsuki, A., et al. (1968). Ascochlorin, a new antibiotic, found by paper-disc agar-diffusion method. I. Isolation, biological and chemical properties of ascochlorin. Journal of Antibiotics, 21, 539–544.PubMedCrossRefGoogle Scholar
  103. Toki, S., Ando, K., Yoshida, M., et al. (1992a). ES-242-1, a novel compound from Verticillium sp., binds to a site on N-methyl-D-aspartate receptor that is coupled to the channel domain. The Journal of Antibiotics, 45, 88–93.PubMedCrossRefGoogle Scholar
  104. Toki, S., Ando, K., Kawamoto, I., et al. (1992b). ES-242-2, -3, -4, -5, -6, -7, and -8, novel bioxanpretreatment produced by Verticillium sp., which act on the N-methyl-D-aspartate receptor. The Journal of Antibiotics, 45, 1047–1054.PubMedCrossRefGoogle Scholar
  105. Tomoda, H., Nishida, H., Huang, X., et al. (1992). New cyclodepsipeptides, enniatins D, E and F produced by Fusarium sp. FO-1305. The Journal of Antibiotics, 45, 1207–1215.PubMedCrossRefGoogle Scholar
  106. Trifonov, L. S., Dreiding, A. S., Hoesch, L., et al. (1981). Isolation of four hexaketides from Verticillium intertexturn. Helvetica Chimica Acta, 64, 1843–1846.CrossRefGoogle Scholar
  107. Trifonov, L. S., Bieri, J. H., Prewo, R., et al. (1982). The constitution of vertinolide, a new derivative of tetronic acid, produced by Verticillium intertextum. Tetrahedron, 38, 397–403.CrossRefGoogle Scholar
  108. Trifonov, L. S., Bieri, J. H., Prewo, R., et al. (1983). Isolation and structure elucidation of three metabolites from Verticillium intertextum, sorbicillin dihydrosorbicillin and bisvertinoquinol. Tetrahedron, 39, 4243–4256.CrossRefGoogle Scholar
  109. Trifonov, L. S., Hilpert, H., Floersheim, P., et al. (1986). Bisvertinols: A new group of dimeric vertinoids from Verticillium intertextum. Tetrahedron, 42, 3157–3179.CrossRefGoogle Scholar
  110. Turbyville, T. J., Wijeratne, E. M., Liu, M. X., et al. (2006). Search for Hsp90 inhibitors with potential anticancer activity: Isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. Journal of Natural Products, 69, 178–184.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Usuki, H., Toyo-oka, M., Kanzaki, H., et al. (2009). Pochonicine, a polyhydroxylated pyrrolizidine alkaloid from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 as a potent b-N-acetylglucosaminidase inhibitor. Bioorganic & Medicinal Chemistry, 17, 7248–7253.CrossRefGoogle Scholar
  112. Valadon, L. R. G., & Mummery, R. S. (1977). Natural β-apo-4′-carotenoic acid methyl ester in the fungus Verticillium agaricinum. Phytochemistry, 16, 613–614.CrossRefGoogle Scholar
  113. Van Raaij, M. J., Abrahams, J. P., Leslie, A. G. W., et al. (1996). The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proceedings of the National Academy of Sciences of the United States of America, 93, 6913–6917.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vining, L. C., Kelleher, W. J., & Schwarting, A. E. (1962). Oosporein production by a strain of Beauveria bassiana originally identified as Amanita muscaria. Canadian Journal of Microbiology, 8, 931–933.CrossRefGoogle Scholar
  115. Visconti, A., Blais, L. A., Apsimon, J. W., et al. (1992). Production of enniatins by Fusarium acuminatum and Fusarium compactum in liquid culture: Isolation and characterization of three new enniatins, B2, B3, and B4. Journal of Agricultural and Food Chemistry, 40, 1076–1082.CrossRefGoogle Scholar
  116. Wainwright, M., & Betts, R. P. (1986). Antibiotic activity of oosporein from Verticillium psalliotae. Transactions of the British Mycological Society, 86, 168–170.CrossRefGoogle Scholar
  117. Wang, F., Luo, D., & Liu, J. (2005). Aurovertin E, a new polyene pyrone from the basidiomycete Albatrellus confluens. The Journal of Antibiotics, 58, 412–415.PubMedCrossRefGoogle Scholar
  118. Wang, Y. L., Li, L. F., Li, D. X., et al. (2015). Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. Journal of Agricultural and Food Chemistry, 63, 6577–6587.PubMedCrossRefGoogle Scholar
  119. Wenke, J., Anke, H., & Sterner, O. (1993). Pseurotin A and 8-0-demethylpseurotin A from Aspergillus fumigatus and their inhibitory activities on chitin synthase. Bioscience, Biotechnology, and Biochemistry, 57, 961–964.CrossRefGoogle Scholar
  120. Wicklow, D. T., Joshi, B. K., Gamble, W. R., et al. (1998). Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from Humicola fuscoatra Traaen NRRL 22980, a mycoparasite of Aspergillus flavus Sclerotia. Applied and Environmental Microbiology, 64, 4482–4484.PubMedPubMedCentralGoogle Scholar
  121. Winssinger, N., & Barluenga, S. (2007). Chemistry and biology of resorcylic acid lactones. Chemical Communications, 7, 22–26.CrossRefGoogle Scholar
  122. Wu, H. Y., Wang, Y. L., Tan, J. L., et al. (2012). Regulation of the growth of cotton bollworms by metabolites from an entomopathogenic fungus Paecilomyces cateniobliquus. Journal of Agricultural and Food Chemistry, 60, 5604–5608.PubMedCrossRefGoogle Scholar
  123. Wu, F. B., Li, T. X., Yang, M. H., et al. (2015). Guanacastane-type diterpenoids from the insect-associated fungus Verticillium dahlia. Journal of Asian Natural Products Research, 18, 117–124. doi: 10.1080/10286020.2015.1061511.
  124. Xu, Y., Orozco, R., Wijeratne, K. E. M., et al. (2009). Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology, 46, 353–364.PubMedCrossRefGoogle Scholar
  125. Xu, Y., Zhou, T., Espinosa-Artiles, P., et al. (2014a). Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in Saccharomyces cerevisiae. ACS Chemical Biology, 9, 1119–1127.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Xu, Y., Zhou, T., Zhang, S., et al. (2014b). Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases. Proceedings of the National Academy of Sciences of the United States of America, 34, 12354–12359.CrossRefGoogle Scholar
  127. Yamamoto, I., Suide, H., Henmi, T., et al. (1970). Antimicrobial α/β-unsaturated δ-lactones from fungi. Takeda Kenkyusho Ho, 29, 1–10.Google Scholar
  128. Yamamoto, K., Hatano, H., Arai, M., et al. (2003). Structure elucidation of new monordens produced by Humicola sp. FO-2942. The Journal of Antibiotics, 56, 533–538.PubMedCrossRefGoogle Scholar
  129. Yamano, T., Hemmi, S., Yamamoto, I. et al. (1971). Fermentative production of antibiotic phomalactone. Patent report, Japan. 71 32,800 (Ct. C 12d, A 61k, C 07g). Takeda Chemical Industries, Ltd.Google Scholar
  130. Yang, Z., Bao, L., Yin, Y., et al. (2014). Pyrenocines N-O: Two novel pyrones from Colletotrichum sp. HCCB03289. The Journal of Antibiotics, 67, 791–793.PubMedCrossRefGoogle Scholar
  131. Zhang, P., Bao, B., Dang, H. T., et al. (2009). Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. Journal of Natural Products, 72, 270–275.PubMedCrossRefGoogle Scholar
  132. Zheng, C. J., Park, S. H., Koshino, H., et al. (2007). Verticillin G, a new antibacterial compound from Bionectra byssicola. The Journal of Antibiotics, 60, 61–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory for Conservation and Utilization of Bio-resources and Key Laboratory for Microbial Resources of the Ministry of EducationYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations