Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

This chapter aims to present classification, occurrence, biological activities and functions of 34 secondary metabolites from Pochonia chlamydosporia (= Verticillium chlamydosporium) and 105 secondary metabolites from the other species of Pochonia reported up to the end of 2015. The secondary metabolites from P. chlamydosporia mainly include resorcylic acid lactone, pyranones, alkaloid and phenolics, while those from the other species of Pochonia belong to polycyclic aromatic compounds, nonaromatic polyketides, phenol-terpenoid hybrids, β-carotene-type neurosporaxanthin, pentanorlanostane triterpenoids, dahiane type diterpenoids, cyclodepsipeptides, verticillin-type diketopiperazines, linear lipopeptide and polyhydroxylated pyrrolizidine. Many of these natural products have attracted much attention for their fascinating molecular architectures and attractive biological activities such as antibacterial, antifungal, antioxidative activities, anti-malarial, antinematicidal, antivirus, antitumour, and other activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi, H., Doi, H., Kasahara, Y., et al. (2015). Asteltoxins from the entomopathogenic fungus Pochonia bulbillosa 8-H-28. Journal of Natural Products, 78, 1730–1734.

    Article  CAS  PubMed  Google Scholar 

  • Aldridge, D. C., Borrow, A., Foster, R. G., et al. (1972). Metabolites of Nectria coccinea. Journal of the Chemical Society, Perkin Transactions, 1, 2136–2141.

    Article  Google Scholar 

  • Amagata, T., Minoura, K., & Numata, A. (1998). Cytotoxic metabolites produced by a fungal strain from a Sargassum alga. The Journal of Antibiotics, 51, 432–434.

    Article  CAS  PubMed  Google Scholar 

  • Angawi, R. F., Swenson, D. C., Gloer, J. B., et al. (2003). Lowdenic acid: A new antifungal polyketide-derived metabolite from a new fungicolous Verticillium sp. Journal of Natural Products, 66, 1259–1262.

    Article  CAS  PubMed  Google Scholar 

  • Arai, M., Yamamoto, K., Namatame, I., et al. (2003). New monordens produced by amidepsine-producing fungus Humicola sp. FO-2942. The Journal of Antibiotics, 56, 526–532.

    Article  CAS  PubMed  Google Scholar 

  • Argoudelis, A. D., & Zieserl, J. F. (1966). The structure of U-13,933, a new antibiotic. Tetrahedron Letters, 18, 1969–1973.

    Article  CAS  PubMed  Google Scholar 

  • Ayer, W. A., & Peña-Rodriguez, L. (1987). Minor metabolites of Monocillium nordinii. Phytochemistry, 26, 1353–1355.

    Article  CAS  Google Scholar 

  • Ayer, W. A., Lee, S. P., Tsuneda, A., et al. (1980). The isolation, identification, and bioassay of the antifungal metabolites produced by Monocillium nordinii. Canadian Journal of Microbiology, 26, 766–773.

    Article  CAS  Google Scholar 

  • Azumi, M., Ishidoh, K., Kinoshita, H., et al. (2008). Aurovertins F-H from the entomopathogenic fungus Metarhizium anisopliae. Journal of Natural Products, 71, 278–280.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, C., Weaver, L., Brooker, R., et al. (1964). Biological and chemical properties of aurovertin, a metabolic product of Calcarisporium abuscula. Lloydia, 27, 88–95.

    CAS  Google Scholar 

  • Bal-Tembe, S., Kundu, S., Roy, K., et al. (1999). Activity of the ilicicolins against plant pathogenic fungi. Pesticide Science, 55, 645–647.

    Article  CAS  Google Scholar 

  • Birch, A. J., Hirkinshaw, J. H., Chaplen, P., et al. (1969). The structures of canescins-A and -B. Australian Journal of Chemistry, 22, 1933–1941.

    Article  CAS  Google Scholar 

  • Bloch, P., & Tamm, C. (1976). Pseurotin, a new metabolite of Pseudeurotium ovalis Stolk having an unusual hetero-spirocyclic system. Helvetica Chimica Acta, 59, 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Boot, C. M., Gassner, N. C., Compton, J. E., et al. (2007). Pinpointing pseurotins from a marine-derived Aspergillus as tools for chemical genetics using a synthetic lethality yeast screen. Journal of Natural Products, 70, 1672–1675.

    Article  CAS  PubMed  Google Scholar 

  • Boros, C., Hamilton, S. M., Katz, B., et al. (1994). Comparison of balanol from Verticillium balanoides and ophiocordin from Cordyceps ophioglossoides. The Journal of Antibiotics, 47, 1010–1016.

    Article  CAS  PubMed  Google Scholar 

  • Brachmann, A. O., Brameyer, S., Kresovic, D., et al. (2013). Pyrones as bacterial signaling molecules. Nature Chemical Biology, 9, 573–578.

    Article  CAS  PubMed  Google Scholar 

  • Brady, S. F., Singh, M. P., Janso, J. E., et al. (2000). Guanacastepene, a fungal-derived diterpene antibiotic with a new carbon skeleton. Journal of the American Chemical Society, 122, 2116–2117.

    Article  CAS  Google Scholar 

  • Cagnoli-Bellavita, N., Ceccherelli, P., Fringuelli, R., et al. (1975). Ascochlorin: a terpenoid metabolite from Acremonium luzulae. Phytochemistry, 14, 807.

    Article  CAS  Google Scholar 

  • Cole, R. J., Kirksey, J. W., Cutler, H. G., et al. (1974). Toxic effects of oosporein from Chaetomium trilatelare. Journal of Agricultural and Food Chemistry, 22, 517–522.

    Article  CAS  PubMed  Google Scholar 

  • Delmotte, P., & Delmotte-Plaquee, J. (1953). A new antifungal substance of fungal origin. Nature, 171, 344.

    Article  CAS  PubMed  Google Scholar 

  • Ebel, R., & Lardy, H. (1975). Influence of aurovertin on mitochondrial ATPase activity. The Journal of Biological Chemistry, 250, 4992–4995.

    CAS  PubMed  Google Scholar 

  • Ellestad, G. A., RHJr, E., & Kunstmann, M. P. (1969). Some new terpenoid metabolites from an unidentified Fusarium species. Tetrahedron, 25, 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  • Ellestad, G. A., Lovell, F. M., Perkinson, N. A., et al. (1978). New zearalenone related macrolides and isocoumarins from an unidentified fungus. The Journal of Organic Chemistry, 43, 2339–2343.

    Article  CAS  Google Scholar 

  • Evans, G., & White, N. H. (1966). Radicicolin and radicicol, two new antibiotics produced by Cylindrocarpon radicicola. Transactions of the British Mycological Society, 49, 563–576.

    Article  CAS  Google Scholar 

  • Evans, R. H., Ellested, G. A., & Kunstmann, M. P. (1969). Two new metabolites from an unidentified Nigrospora species. Tetrahedron Letters, 10, 1791–1794.

    Article  Google Scholar 

  • Fairlamb, I. J., & McGlacken, G. P. (2005). 2-pyrones natural products and mimetics: Isolation, characterisation and biological activity. Natural Product Reports, 22, 369–385.

    Article  PubMed  Google Scholar 

  • Fang, S., Chen, L., Yu, M., et al. (2015). Synthesis, antitumor activity, and mechanism of action of 6-acrylic phenethyl ester-2-pyranone derivatives. Organic & Biomolecular Chemistry, 13, 4714–4726.

    Article  CAS  Google Scholar 

  • Firáková, S., Proksa, B., & Šturdíková, M. (2007). Biosynthesis and biological activity of enniatins. Pharmazie, 62, 563–568.

    PubMed  Google Scholar 

  • Grove, J. F. (1984). 23, 24, 25, 26, 27-Pentanorlanost-8-en-3β,22-diol from Verticillium lecanii. Phytochemistry, 23, 1721–1723.

    Article  CAS  Google Scholar 

  • Guo, H., Feng, T., Li, Z. H., et al. (2013). Ten new aurovertins from cultures of the basidiomycete Albatrellus confluens. Natural Products and Bioprospecting, 3, 8–13.

    Article  CAS  PubMed Central  Google Scholar 

  • Hashida, J., Niitsuma, M., Iwatsuki, M., et al. (2010). Pyrenocine I, a new pyrenocine analogue produced by Paecilomyces sp. FKI-3573. The Journal of Antibiotics, 63, 559–561.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, D., Loosli, H. R., & Niklaus, P. (1972). Isolierung von 1lα, 1l′α-Dihydroxychaetocin aus Verticillium tenerum. Helvetica Chimica Acta, 55, 2182–2187.

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa, S., Minato, H., & Katagiri, K. (1971). The ilicicolins, antibiotics from Cylindrocladium ilicicola. The Journal of Antibiotics, 24, 653–654.

    Article  CAS  PubMed  Google Scholar 

  • Hellwig, V., Mayer-Bartschmid, A., Müller, H., et al. (2003). Pochonins A-F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. Journal of Natural Products, 66, 829–837.

    Article  CAS  PubMed  Google Scholar 

  • Huang, T. C., Chang, H. Y., Hsu, C. H., et al. (2008). Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. Journal of Proteome Research, 7, 1433–1444.

    Article  CAS  PubMed  Google Scholar 

  • Isaka, M., Kongsaeree, P., & Thebtaranonth, Y. (2001). Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. II. Structure elucidation. The Journal of Antibiotics, 54, 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Isaka, M., Palasarn, S., Rachtawee, P., et al. (2005). Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Organic Letters, 7, 2257–2260.

    Article  CAS  PubMed  Google Scholar 

  • Isaka, M., Yangchum, A., Supothina, S., et al. (2015). Ascochlorin derivatives from the leafhopper pathogenic fungus Microcera sp. BCC 17074. The Journal of Antibiotics, 68, 47–51.

    Article  CAS  PubMed  Google Scholar 

  • Jirakkakul, J., Punya, J., Pongpattanakitshote, S., et al. (2008). Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 154, 995–1006.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K. M., Swenson, L., Opipari, A. W., Jr., et al. (2009). Mechanistic basis for differential inhibition of the F1FO-ATPase by aurovertin. Biopolymers, 91, 830–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi, B. K., Gloer, J. B., & Wicklow, D. T. (1999). New verticillin and glisoprenin analogues from Gliocladium catenulatum, a mycoparasite of Aspergillus flavus sclerotia. Journal of Natural Products, 62, 730–733.

    Article  CAS  PubMed  Google Scholar 

  • Kato, A., Kato, N., Adachi, I., et al. (2007). Isolation of glycosidase-inhibiting hyacinthacines and related alkaloids from Scilla socialis. Journal of Natural Products, 70, 993–997.

    Article  CAS  PubMed  Google Scholar 

  • Kawagishi, H., Sato, H., Sakamura, S., et al. (1984). Isolation and structure of a new diprenyl phenol, colletorin B produced by Cephalosporium diospyri. Agricultural and Biological Chemistry, 48, 1903–1904.

    CAS  Google Scholar 

  • Khambay, B., Bourne, J., Cameron, S., et al. (2000). A nematicidal metabolite from Verticillium chlamydosporium. Pest Management Science, 56, 1098–1099.

    Article  CAS  Google Scholar 

  • Kim, J. C., Choi, G. J., Kim, H. T., et al. (2000). Pathogenicity and pyrenocine production of Curvularia inaequalis isolated from zoysia grass. Plant Disease, 84, 684–688.

    Article  CAS  Google Scholar 

  • Kim, J. C., Choi, G. J., Park, J. H., et al. (2001). Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Management Science, 57, 554–559.

    Article  CAS  PubMed  Google Scholar 

  • Koehn, F. E., Kirsch, D. R., Feng, X., et al. (2008). A cell wall-active lipopeptide from the fungus Pochonia bulbillosa. Journal of Natural Products, 71, 2045–2048.

    Article  CAS  PubMed  Google Scholar 

  • Kosuge, Y., Suzuki, A., Hirota, S., & Tamura, S. (1973). Structure of colletochlorin from Colletotrichum nicotianae. Agricultural and Biological Chemistry, 37, 455–456.

    Article  CAS  Google Scholar 

  • Krasnoff, S., & Gupta, S. (1994). Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. Journal of Chemical Ecology, 20, 293–302.

    Article  CAS  PubMed  Google Scholar 

  • Krohn, K., Sohrab, M. H., Draeger, S., et al. (2008). New pyrenocines from an endophytic fungus. Natural Product Communications, 3, 1689–1692.

    CAS  Google Scholar 

  • Kruger, G. J., Steyn, P. S., Vleggaar, R., et al. (1979). X-ray crystal structure of asteltoxin, a novel mycotoxin from Aspergillus stellatus Curzi. Journal of the Chemical Society, Chemical Communications, 10, 441–442.

    Article  Google Scholar 

  • Kulanthaivel, P., Hallock, Y. F., Boros, C., et al. (1993). Balanol: A novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. Journal of the American Chemical Society, 115, 6452–6453.

    Article  CAS  Google Scholar 

  • Lewis, C., Staunton, J., & Sunter, D. (1988). Biosynthesis of canescin, a metabolite of Aspergillus malignus: Incorporation of methionine, acetate, succinate, and isocoumarin precursors, labelled with deuterium and carbon-13. Journal of the Chemical Society, 4, 747–754.

    Google Scholar 

  • Liu, F., Liu, Q., Yang, D., et al. (2011). Verticillin A overcomes apoptosis resistance in human colon carcinoma through DNA methylation-dependent upregulation of BNIP3. Cancer Research, 71, 6807–6816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. Z., CH, L., & Shen, M. (2014). Guanacastane-type diterpenoids from Coprinus plicatilis. Phytochemistry Letters, 7, 161–164.

    Article  CAS  Google Scholar 

  • Mao, X.-M., Zhan, Z.-J., Grayson, M. N., et al. (2015). Efficient biosynthesis of fungal polyketides containing the dioxabicyclo-octane ring system. Journal of the American Chemical Society, 137, 11904–11907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel, K. H., Chaney, M. O., Jones, N. D., et al. (1974). Epipolythiopiperazinedione antibiotics from Penicillium turbatum. The Journal of Antibiotics, 27, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Minato, H., Katayama, T., Hayakawa, S., et al. (1972). Identification of ilicicolins with ascochlorin and LL-Z 1272. The Journal of Antibiotics, 25, 315–316.

    Article  CAS  PubMed  Google Scholar 

  • Minato, H., Matsumoto, M., & Katayama, T. (1973). Studies on the metabolites of Verticillium sp. structures of verticillins A, B, and C. Journal of the Chemical Society. Perkin Transactions 1, 17, 1819–1825.

    Article  CAS  PubMed  Google Scholar 

  • Mirrington, R. N., Ritchie, E., Shoppee, C. W., et al. (1964). The constitution of radicicol. Tetrahedron Letters, 7, 365–370.

    Article  Google Scholar 

  • Mizuba, S., Lee, K., & Jiu, J. (1975). Three antimicrobial metabolites from Aspergillus caespitosus. Canadian Journal of Microbiology, 21, 1781–1787.

    Article  CAS  PubMed  Google Scholar 

  • Molnár, I., Gibson, D. M., & Krasnoff, S. B. (2010). Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports, 27, 1241–1275.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. A. C., Ewing, D. D. F., Whipps, J. M., et al. (1995). Antifungal hydroxymethyl-phenols from the mycoparasite Verticillium biguttatum. Phytochemistry, 39, 1043–1048.

    Article  CAS  Google Scholar 

  • Moulin, E., Zoete, V., Barluenga, S., et al. (2005). Synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. Journal of the American Chemical Society, 127, 6999–7004.

    Article  CAS  PubMed  Google Scholar 

  • Moulin, E., Barluenga, S., Totzke, F., et al. (2006). Diversity-oriented synthesis of pochonins and biological evaluation against a panel of kinases. Chemistry – A European Journal, 12, 8819–8834. doi:10.1002/chem.200600553.

    Article  CAS  Google Scholar 

  • Mulheirn, L., Beechey, R., & Leworthy, D. (1974). Aurovertin B, a metabolite of Calcarisporium arbuscula. Journal of the Chemical Society, Chemical Communications, 21, 874–876.

    Article  Google Scholar 

  • Nair, M. S. R., & Carey, S. T. (1980). Metabolites of pyrenomycetes XIII: Structure of (+)-hypothemycin, an antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Letters, 21, 2011–2012.

    Article  CAS  Google Scholar 

  • Nakajyo, S., Shimizu, K., Kometani, A., et al. (1983). On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in guinea-pig taenia coli. Japanese Journal of Pharmacology, 33, 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Nilanonta, C., Isaka, M., Chanphen, R., et al. (2003a). Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: Isolation and studies on precursor-directed biosynthesis. Tetrahedron, 59, 1015–1020.

    Article  CAS  Google Scholar 

  • Nilanonta, C., Isaka, M., Kittakoop, P., et al. (2003b). New Diketopiperazines from the entomopathogenic Fungus Verticillium hemipterigenum BCC 1449. The Journal of Antibiotics, 56, 647–651.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, S., Toshima, H., Kanai, H., et al. (1988). Total synthesis and the absolute configuration of aurovertin B, an acute neurotoxic metabolite. Tetrahedron, 44, 6315–6324.

    Article  CAS  Google Scholar 

  • Niu, X. M., Wang, Y. L., Chu, Y. S., et al. (2010). Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Agricultural and Food Chemistry, 58, 828–834.

    Article  CAS  PubMed  Google Scholar 

  • Niwa, M., Ogiso, S., Endo, T., et al. (1980). Isolation and structure of citreopyrone, a metabolite of Penicillium citreo-viride Biourge. Tetrahedron Letters, 21, 4481–4482.

    Article  CAS  Google Scholar 

  • Nozawa, K., & Nakajima, S. (1979). Isolation of radicicol from Penicillium luteo-aurantium and meleagrin, a new metabolite, from Penicillium meleagrinum. Journal of Natural Products, 42, 374–377.

    Article  CAS  Google Scholar 

  • Ohshima, S., Yanagisawa, M., Katoh, A., et al. (1994). Fusarium merismoides CORDA NR 6356, the source of the protein kinase C inhibitor, azepinostatin taxonomy, yield improvement, fermentation and biological activity. The Journal of Antibiotics, 47, 639–647.

    Article  CAS  PubMed  Google Scholar 

  • Owen, S. P., & Bhuyan, B. K. (1965). Biological properties of a new antibiotic, U-13,933. Antimicrobial Agents and Chemotherapy, 5, 804–807.

    CAS  PubMed  Google Scholar 

  • Raaijmakers, J. M., De Bruijn, I., Nybroe, O., et al. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34, 1037–1062.

    Article  CAS  PubMed  Google Scholar 

  • Rukachaisirikul, V., Kaeobamrung, J., Panwiriyarat, W., et al. (2007). A new pyrone derivative from the endophytic fungus Penicillium paxilli PSU-A71. Chemical & Pharmaceutical Bulletin, 55, 1383–1384.

    Article  CAS  Google Scholar 

  • Saito, T., Suzuki, Y., Koyama, K., et al. (1988). Chetracin A and chaetocins B and C, three new epipolythiodioxopiperazines from Chaetomium spp. Chemical & Pharmaceutical Bulletin, 36, 1942–1956.

    Article  CAS  Google Scholar 

  • Sasaki, H., Hosokawa, T., Sawada, M., et al. (1974). Isolation and structure of ascochlorin and its analogs. Agricultural and Biological Chemistry, 38, 1463–1466.

    Article  CAS  Google Scholar 

  • Sato, H., Konoma, K., & Sakamura, S. (1979). Phytotoxins produced by onion pink root fungus Pyrenochaeta terrestris. Agricultural and Biological Chemistry, 43, 2409–2411.

    CAS  Google Scholar 

  • Sato, H., Konoma, K., Sakamura, S., et al. (1981). X-ray crystal structure of pyrenocine A, a phytotoxin from Pyrenochaeta terrestris. Agricultural and Biological Chemistry, 45, 795–797.

    CAS  Google Scholar 

  • Satre, M. (1981). The effect of asteltoxin and citreomontanine, two polyenic a-pyrone mycotoxins, on Escherichia coli adenosine triphosphatase. Biochemical and Biophysical Research Communications, 100, 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Schenke, D., Bottcher, C., Lee, J., & Scheel, D. (2011). Verticillin A is likely not produced by Verticillium sp. The Journal of Antibiotics, 64, 523–524.

    Article  CAS  PubMed  Google Scholar 

  • Schmeda-Hirschmann, G., Hormazabal, E., Rodriguez, J. A., et al. (2008). Cycloaspeptide A and pseurotin a from the endophytic fungus Penicillium janczewskii. Zeitschrift für Naturforschung. Section C, 63, 383–388.

    CAS  Google Scholar 

  • Seephonkai, P., Isaka, M., Kittakoop, P., et al. (2004). A novel ascochlorin glycoside from the insect pathogenic fungus Verticillium hemipterigenum BCC 2370. The Journal of Antibiotics, 57, 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Shin, C.-G., An, D.-G., Song, H.-H., et al. (2009). Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. The Journal of Antibiotics, 62, 687–690.

    Article  CAS  PubMed  Google Scholar 

  • Shinonaga, H., Kawamura, Y., Ikeda, A., et al. (2009a). The search for a hair-growth stimulant: New radicicol analogues as WNT-5A expression inhibitors from Pochonia chlamydosporia var. chlamydosporia. Tetrahedron Letters, 50, 108–110.

    Article  CAS  Google Scholar 

  • Shinonaga, H., Kawamura, Y., Ikeda, A., et al. (2009b). Pochonins K-P: New radicicol analogues from Pochonia chlamydosporia var. chlamydosporia and their WNT-5A expression inhibitory activities. Tetrahedron, 65, 3446–3453.

    Article  CAS  Google Scholar 

  • Shizuri, Y., Kosemura, S., Yamamura, S., et al. (1984). Biosynthesis of citreothiolactone, citreopyrone and pyrenocine B. Tetrahedron Letters, 25, 1583–1584.

    Article  CAS  Google Scholar 

  • Singh, S. B., Ball, R. G., Bills, G. F., et al. (1996). Chemistry and biology of cylindrols: Novel inhibitors of Ras farnesyl-protein transferase from Cylindrocarpon lucidum. The Journal of Organic Chemistry, 61, 7727–7737.

    Article  CAS  PubMed  Google Scholar 

  • Sparace, S. A., Reeder, R. D., & Khanizadeh, S. (1987). Antibiotic activity of the pyrenocines. Canadian Journal of Microbiology, 33, 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Steiner, E., Kalamar, J., Charollais, E., et al. (1974). Recherches sur la biochimie des champignons inférieurs IX. Synthèse de précurseurs marqués et biosynthèse de la phoenicine et de ľoosporéine. Helvetica Chimica Acta, 57, 2377–2387.

    Article  CAS  PubMed  Google Scholar 

  • Stob, M., Baldwin, R. S., Tuite, J., et al. (1962). Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae. Nature, 196, 1318.

    Article  CAS  PubMed  Google Scholar 

  • Strunz, G. M., Heissner, C. J., Kakushima, M., et al. (1974). Metabolites of Hyalodendron sp.: Bisdethiodi (methylthio) hyalodendrin. Canadian Journal of Chemistry, 52, 325–326.

    Article  CAS  Google Scholar 

  • Supothina, S., Isaka, M., Kirtikara, K., et al. (2004). Enniatin production by the Entomopathogenic fungus Verticillium hemipterigenum BCC 1449. The Journal of Antibiotics, 57, 732–738.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, A., Kanaoka, M., Isogai, A., et al. (1977). Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Letters, 18, 2167–2170.

    Article  Google Scholar 

  • Takamatsu, S., Rho, M. C., Masuma, R., et al. (1994). A novel testosterone 5α-reductase inhibitor, 8′,9′-dehydroascochiorin produced by Verticillium sp. FO-2787. Chemical & Pharmaceutical Bulletin, 42, 953–956.

    Article  CAS  Google Scholar 

  • Takatsuki, A., Tamura, G., & Arima, K. (1969). Antiviral and antitumor antibiotics. XIV. Effects of ascochlorin and other respiration inhibitors on multiplication of Newcastle disease virus in cultured cells. Applied Microbiology, 17, 825–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto, Y., Watanabe, H., Uchida, K., et al. (2005). Chemistry and biology of moverastins, inhibitors of cancer cell migration, produced by Aspergillus. Chemistry & Biology, 12, 1337–1347.

    Article  CAS  Google Scholar 

  • Tal, B., & Robeson, D. J. (1986). The production of pyrenocines A and B by a novel Alternaria species. Z Naturforsch C. Biosciences, 41, 1032–1036.

    CAS  Google Scholar 

  • Tamura, G., Suzuki, S., Takatsuki, A., et al. (1968). Ascochlorin, a new antibiotic, found by paper-disc agar-diffusion method. I. Isolation, biological and chemical properties of ascochlorin. Journal of Antibiotics, 21, 539–544.

    Article  CAS  PubMed  Google Scholar 

  • Toki, S., Ando, K., Yoshida, M., et al. (1992a). ES-242-1, a novel compound from Verticillium sp., binds to a site on N-methyl-D-aspartate receptor that is coupled to the channel domain. The Journal of Antibiotics, 45, 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Toki, S., Ando, K., Kawamoto, I., et al. (1992b). ES-242-2, -3, -4, -5, -6, -7, and -8, novel bioxanpretreatment produced by Verticillium sp., which act on the N-methyl-D-aspartate receptor. The Journal of Antibiotics, 45, 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  • Tomoda, H., Nishida, H., Huang, X., et al. (1992). New cyclodepsipeptides, enniatins D, E and F produced by Fusarium sp. FO-1305. The Journal of Antibiotics, 45, 1207–1215.

    Article  CAS  PubMed  Google Scholar 

  • Trifonov, L. S., Dreiding, A. S., Hoesch, L., et al. (1981). Isolation of four hexaketides from Verticillium intertexturn. Helvetica Chimica Acta, 64, 1843–1846.

    Article  CAS  Google Scholar 

  • Trifonov, L. S., Bieri, J. H., Prewo, R., et al. (1982). The constitution of vertinolide, a new derivative of tetronic acid, produced by Verticillium intertextum. Tetrahedron, 38, 397–403.

    Article  CAS  Google Scholar 

  • Trifonov, L. S., Bieri, J. H., Prewo, R., et al. (1983). Isolation and structure elucidation of three metabolites from Verticillium intertextum, sorbicillin dihydrosorbicillin and bisvertinoquinol. Tetrahedron, 39, 4243–4256.

    Article  CAS  Google Scholar 

  • Trifonov, L. S., Hilpert, H., Floersheim, P., et al. (1986). Bisvertinols: A new group of dimeric vertinoids from Verticillium intertextum. Tetrahedron, 42, 3157–3179.

    Article  CAS  Google Scholar 

  • Turbyville, T. J., Wijeratne, E. M., Liu, M. X., et al. (2006). Search for Hsp90 inhibitors with potential anticancer activity: Isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. Journal of Natural Products, 69, 178–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usuki, H., Toyo-oka, M., Kanzaki, H., et al. (2009). Pochonicine, a polyhydroxylated pyrrolizidine alkaloid from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 as a potent b-N-acetylglucosaminidase inhibitor. Bioorganic & Medicinal Chemistry, 17, 7248–7253.

    Article  CAS  Google Scholar 

  • Valadon, L. R. G., & Mummery, R. S. (1977). Natural β-apo-4′-carotenoic acid methyl ester in the fungus Verticillium agaricinum. Phytochemistry, 16, 613–614.

    Article  CAS  Google Scholar 

  • Van Raaij, M. J., Abrahams, J. P., Leslie, A. G. W., et al. (1996). The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proceedings of the National Academy of Sciences of the United States of America, 93, 6913–6917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vining, L. C., Kelleher, W. J., & Schwarting, A. E. (1962). Oosporein production by a strain of Beauveria bassiana originally identified as Amanita muscaria. Canadian Journal of Microbiology, 8, 931–933.

    Article  CAS  Google Scholar 

  • Visconti, A., Blais, L. A., Apsimon, J. W., et al. (1992). Production of enniatins by Fusarium acuminatum and Fusarium compactum in liquid culture: Isolation and characterization of three new enniatins, B2, B3, and B4. Journal of Agricultural and Food Chemistry, 40, 1076–1082.

    Article  CAS  Google Scholar 

  • Wainwright, M., & Betts, R. P. (1986). Antibiotic activity of oosporein from Verticillium psalliotae. Transactions of the British Mycological Society, 86, 168–170.

    Article  Google Scholar 

  • Wang, F., Luo, D., & Liu, J. (2005). Aurovertin E, a new polyene pyrone from the basidiomycete Albatrellus confluens. The Journal of Antibiotics, 58, 412–415.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. L., Li, L. F., Li, D. X., et al. (2015). Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. Journal of Agricultural and Food Chemistry, 63, 6577–6587.

    Article  CAS  PubMed  Google Scholar 

  • Wenke, J., Anke, H., & Sterner, O. (1993). Pseurotin A and 8-0-demethylpseurotin A from Aspergillus fumigatus and their inhibitory activities on chitin synthase. Bioscience, Biotechnology, and Biochemistry, 57, 961–964.

    Article  CAS  Google Scholar 

  • Wicklow, D. T., Joshi, B. K., Gamble, W. R., et al. (1998). Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from Humicola fuscoatra Traaen NRRL 22980, a mycoparasite of Aspergillus flavus Sclerotia. Applied and Environmental Microbiology, 64, 4482–4484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winssinger, N., & Barluenga, S. (2007). Chemistry and biology of resorcylic acid lactones. Chemical Communications, 7, 22–26.

    Article  Google Scholar 

  • Wu, H. Y., Wang, Y. L., Tan, J. L., et al. (2012). Regulation of the growth of cotton bollworms by metabolites from an entomopathogenic fungus Paecilomyces cateniobliquus. Journal of Agricultural and Food Chemistry, 60, 5604–5608.

    Article  CAS  PubMed  Google Scholar 

  • Wu, F. B., Li, T. X., Yang, M. H., et al. (2015). Guanacastane-type diterpenoids from the insect-associated fungus Verticillium dahlia. Journal of Asian Natural Products Research, 18, 117–124. doi:10.1080/10286020.2015.1061511.

  • Xu, Y., Orozco, R., Wijeratne, K. E. M., et al. (2009). Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology, 46, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Zhou, T., Espinosa-Artiles, P., et al. (2014a). Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in Saccharomyces cerevisiae. ACS Chemical Biology, 9, 1119–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Zhou, T., Zhang, S., et al. (2014b). Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases. Proceedings of the National Academy of Sciences of the United States of America, 34, 12354–12359.

    Article  CAS  Google Scholar 

  • Yamamoto, I., Suide, H., Henmi, T., et al. (1970). Antimicrobial α/β-unsaturated δ-lactones from fungi. Takeda Kenkyusho Ho, 29, 1–10.

    CAS  Google Scholar 

  • Yamamoto, K., Hatano, H., Arai, M., et al. (2003). Structure elucidation of new monordens produced by Humicola sp. FO-2942. The Journal of Antibiotics, 56, 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Yamano, T., Hemmi, S., Yamamoto, I. et al. (1971). Fermentative production of antibiotic phomalactone. Patent report, Japan. 71 32,800 (Ct. C 12d, A 61k, C 07g). Takeda Chemical Industries, Ltd.

    Google Scholar 

  • Yang, Z., Bao, L., Yin, Y., et al. (2014). Pyrenocines N-O: Two novel pyrones from Colletotrichum sp. HCCB03289. The Journal of Antibiotics, 67, 791–793.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Bao, B., Dang, H. T., et al. (2009). Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. Journal of Natural Products, 72, 270–275.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, C. J., Park, S. H., Koshino, H., et al. (2007). Verticillin G, a new antibacterial compound from Bionectra byssicola. The Journal of Antibiotics, 60, 61–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Mei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Niu, XM. (2017). Secondary Metabolites from Pochonia chlamydosporia and Other Species of Pochonia . In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_7

Download citation

Publish with us

Policies and ethics