Skip to main content

Abstract

Fungal proteomics research is growing as a result of the large number of fungal sequenced genomes of well annotated proteins available today. The proteome of any organism is dynamic as proteins differ depending on environmental conditions, unlike genomes which are practically constant for all the cells of an organism. In this chapter we have reviewed the ‘state-of-the-art’ of fungal proteomics, including sample preparation, protein separation and identification. We have given examples of proteomics of entomopathogenic and nematophagous fungi. We have also focused our attention on the proteomic study of Pochonia chlamydosporia carried out to date. In this study, the fungus was grown in chitin or chitosan as the main carbon and nitrogen nutrient sources, and the secretome of the fungus in both conditions analyzed. Proteins were concentrated using TCA/acetone. Two-dimensional, sodium dodecyl sulphate polyacrylamide gel electrophoresis and differential gel electrophoresis separated proteins for size and isolectric point. Some of the proteins overexpressed with chitosan that were identified using MALDI/TOF-TOF and LC-MS, were related with carbohydrate or protein degradation. The recently available complete Pochonia chlamydosporia genome sequence could help with protein identification of fungal secretomes under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah, C., Dumas-Gaudot, E., Renaut, J. et al. (2012). Gel-based and gel-free quantitative proteomics approaches at a glance. International Journal of Plant Genomics. ID 494572 doi:10.1155/2012/494572.

  • Adav, S. S., & Sze, S. K. (2013). Fungal secretome for biorefinery: Recent advances in proteomic technology. Mass Spectrometry Letters, 4, 1–9.

    Article  CAS  Google Scholar 

  • Baggerman, G., Vierstraete, E., De Loof, A., et al. (2005). Gel based versus gel-free proteomics: A review. Combinatorial Chemistry & High Throughput Screening, 8, 669–677.

    Article  CAS  Google Scholar 

  • Barros, B. H., da Silva, S. H., dos ReisMarques, E. R., et al. (2010). A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Fungal Biology, 114, 572–579.

    Article  CAS  PubMed  Google Scholar 

  • Bhadauria, V., Zhao, W. S., Wang, L. X., et al. (2007). Advances in fungal proteomics. Microbiological Research, 162, 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Bianco, L., & Perrotta, G. (2015). Methodologies and perspectives of proteomics applied to filamentous fungi: From sample preparation to secretome analysis. International Journal of Molecular Sciences, 16, 5803–5829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bini, L., Calvete, J. J., Hochstrasser, D., et al. (2014). The magic of words. Journal of Proteomics, 107, 1–4.

    Article  PubMed  Google Scholar 

  • Bonants, P. J. M., Fitters, P. F. L., Thijs, H., et al. (1995). A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 141, 775–784.

    Article  CAS  PubMed  Google Scholar 

  • Borrebaeck, C. A. K., Mattiason, B., & Nordbring-Hertz, B. (1984). Isolation and partial characterization of a carbohydrate-binding protein from a nematode-trapping fungus. Journal of Bacteriology, 159, 53–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruneau, J.-M., Magnin, T., Tagat, E., Legrand, R., Bernard, M., Diaquin, M., Fudali, C., & Latgé, J.-P. (2001). Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis, 22, 2812–2823.

    Article  CAS  PubMed  Google Scholar 

  • Casas-Flores, S., & Herrera-Estrella, A. (2007). Antagonism of plant parasitic nematodes by fungi. In C. P. Kubicek & I. S. Druzhinina (Eds.), Environmental and microbial relationships, 2nd edn, The Mycota IV (pp. 147–157). Heidelberg: Springer.

    Google Scholar 

  • Damerval, C., De Vienne, D., Zivy, M., et al. (1986). Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis, 7, 52–54.

    Article  CAS  Google Scholar 

  • De Oliveira, J. M. P. F., & de Graaff, L. H. (2011). Proteomics of industrial fungi: Trends and insights for biotechnology. Applied Microbiology and Biotechnology, 89, 225–237.

    Article  PubMed  Google Scholar 

  • Doyle, S. (2011). Fungal proteomics: From identification to function. FEMS Microbiology Letters, 321, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Engelmann, I., & Pujo, N. (2010). Innate immunity in C. elegans. In K. Söderhäll (Ed.), Invertebrate Immunity (pp. 105–121). Heidelberg: Landes Bioscience and Springer Science+Business Media.

    Chapter  Google Scholar 

  • Escudero, N., Ferreira, S. R., Lopez-Moya, F., et al. (2016). Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biology. doi:10.1016/j.funbio.2015.12.005.

  • Esteves, I., Peteira, B., Powers, S., et al. (2009). Effects of osmotic and matric potential on radial growth and accumulation of endogenous reserves in three isolates of Pochonia chlamydosporia. Biocontrol Science and Technology, 19, 185–199.

    Article  Google Scholar 

  • Giraldo, M. C., & Valent, B. (2013). Filamentous plant pathogen effectors in action. Nature Reviews. Microbiology, 11, 800–814.

    Article  CAS  PubMed  Google Scholar 

  • Girard, V., Dieryckx, C., Job, C., et al. (2013). Secretomes: The fungal strike force. Proteomics, 13, 597–608.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Vidal, S., Lopez-Llorca, L. V., Jansson, H.-B., et al. (2006). Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron, 37, 624–632.

    Article  PubMed  Google Scholar 

  • Gómez-Vidal, S., Tena, M., Lopez-Llorca, L. V., et al. (2008). Protein extraction from Phoenix dactylifera L. leaves, a recalcitrant material, for two-dimensional electrophoresis. Electrophoresis, 29, 448–456.

    Article  PubMed  Google Scholar 

  • Gómez-Vidal, S., Salinas, J., Tena, M., et al. (2009). Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis, 30, 2996–3005.

    Article  PubMed  Google Scholar 

  • Görg, A., & Weiss, W. (2004). Protein profile comparisons of microorganism, cells and tissues using 2D gels. In D. W. Speicher (Ed.), Proteome analysis. Interpreting the genome (pp. 20–74). Amsterdam: Elsevier BV.

    Google Scholar 

  • Grinyer, J., McKay, M., Herbert, B., et al. (2004). Fungal proteomics: Mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Current Genetics, 45, 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Macedo, M. L., Ferraz, A., Rodriguez, J., et al. (2002). Iron-regulated proteins in Phanerochaete chrysosporium and Lentinula edodes: Differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis, 23, 655–661.

    Article  PubMed  Google Scholar 

  • Iijima, N., Yoshino, H., Ten, L. C., et al. (2002). Two genes encoding fruit body lectins of Pleurotus cornucopiae: Sequence similarity with the lectin of a nematode-trapping fungus. Bioscience, Biotechnology, and Biochemistry, 66, 2083–2089.

    Article  CAS  PubMed  Google Scholar 

  • Iijima, N., Amano, K., Ando, A., et al. (2003). Production of fruiting-body lectins of Pleurotus cornucopiae in methylotrophic yeast Pichia pastoris. Journal of Bioscience and Bioengineering, 95, 416–418.

    Article  CAS  PubMed  Google Scholar 

  • James, P. (1997). Protein identification in the post-genome era: The rapid rise of proteomics. Quarterly Reviews of Biophysics, 30, 279–331.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, H. B., & Friman, E. (1999). Infection-related surface proteins on conidia of the nematophagous fungus Drechmeria coniospora. Mycological Research, 103, 249–256.

    Article  Google Scholar 

  • Jansson, H., & Lopez-Llorca, L.V. (2001). Biology of nematophagous fungi. Trichomycetes and other fungal groups: Robert W. Lichtwardt commemoration, pp. 144–173.

    Google Scholar 

  • Khan, A., Williams, K., Molloy, M. P., et al. (2003). Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein Expression and Purification, 32, 210–220.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2004). Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 3, 346–352.

    Article  Google Scholar 

  • Khan, A., Williams, K., & Soon, J. (2008). Proteomic analysis of the knob-producing nematode-trapping fungus Monacrosporium lysipagum. Mycological Research, 112, 1447–1452.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Nandakumar, M. P., & Marten, M. R. (2007). Proteomics of filamentous fungi. Trends in Biotechnology, 25, 395–400.

    Article  CAS  PubMed  Google Scholar 

  • Larriba, E., Martín-Nieto, J., & Lopez-Llorca, L. V. (2012). Gene cloning, molecular modeling, and phylogenetics of serine protease P32 and serine carboxypeptidase SCP1 from nematophagous fungi Pochonia rubescens and Pochonia chlamydosporia. Canadian Journal of Microbiology, 58, 815–827.

    Article  CAS  PubMed  Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65(C), 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Liang, L., Wu, H., Liu, Z., et al. (2013). Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Applied Microbiology and Biotechnology, 97, 8683–8692.

    Article  CAS  PubMed  Google Scholar 

  • Lim, D., Hains, P., Walsh, B., et al. (2001). Proteins associated with the cell envelope of Trichoderma reesei: A proteomic approach. Proteomics, 1, 899–910.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Llorca, L. (1990). Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Canadian Journal of Microbiology, 36, 530–537.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L., & Robertson, W. (1992). Immunocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Experimental Mycology, 16, 261–267.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L. V., Maciá-Vicente, J. G., Jansson, H., et al. (2008). Mode of action and interactions of nematophagous fungi. In A. Ciancio & K. G. Mukerji (Eds.), Integrated Management of Plant Pests and Diseases, vol. 2. Of the series integrated management and biocontrol of vegetable and grain crops nematodes (pp. 51–76). Netherlands: Springer.

    Google Scholar 

  • Lopez-Llorca, L. V., Gómez-Vidal, S., Monfort, E., et al. (2010). Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genetics and Biology, 47, 342–351.

    Article  CAS  PubMed  Google Scholar 

  • Maciá-Vicente, J. G., Palma-Guerrero, J., Gómez-Vidal, S., et al. (2011). New insights on the mode of action of fungal pathogens of invertebrates for improving their biocontrol performance. In K. G. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms, progress in biological control (pp. 203–225). Netherlands: Springer.

    Chapter  Google Scholar 

  • Manalil, N. S., Te’o, V. S. J., Braithwaite, K., et al. (2009). A proteomic view into infection of greyback canegrubs (Dermolepida albohirtum) by Metarhizium anisopliae. Current Genetics, 55, 571–581.

    Article  CAS  PubMed  Google Scholar 

  • Manalil, N. S., Te’o, V. S. J., Braithwaite, K., et al. (2010). Comparative analysis of the Metarhizium anisopliae secretome in response to exposure to the greyback cane grub and grub cuticles. Fungal Biology, 114, 637–645.

    Article  PubMed  Google Scholar 

  • Marouga, R., David, S., & Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Analytical and Bioanalytical Chemistry, 382, 669–678.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Gomariz, M., Perumal, P., Mekala, S., et al. (2009). Proteomics analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics, 9, 2230–2252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi, Q., Yang, J., Ye, F., et al. (2010). Cloning and overexpression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochemistry, 45, 810–814.

    Article  CAS  Google Scholar 

  • Minden, J. S., Dowd, S. R., Meyer, H. E., et al. (2009). Difference gel electrophoresis. Electophoresis, 30, S156–S161.

    Article  Google Scholar 

  • Minglian, Z., Minghe, M., & Keqin, Z. (2004). Characterization of a neutral serine protease and its full-length cDNa from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia, 96, 16–22.

    Article  PubMed  Google Scholar 

  • Morton, C., Hirsch, P., Peberdy, J., et al. (2003). Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Murad, A. M., Noronha, E. F., Miller, R. N. G., et al. (2008). Proteomic analysis of Metarhizium anisopliae secretion in the presence of the insect pest Callosobruchus maculatus. Microbiology, 154, 3766–3774.

    Article  CAS  PubMed  Google Scholar 

  • Nordbring-Hertz, B., Jansson, H. B., & Tunlid, A. (2006). Nematophagous fungi. In: eLS. Wiley, Chichester. doi:10.1002/9780470015902.a0000374.pub3.

  • Palma-Guerrero, J., Jansson, H. B., Salinas, J., et al. (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology, 104, 541–553.

    CAS  PubMed  Google Scholar 

  • Palma-Guerrero, J., Gómez-Vidal, S., Tikhonov, V. E., et al. (2010). Comparative analysis of extracellular proteins from Pochonia chlamydosporia grown with chitosan or chitin as main carbon and nitrogen sources. Enzyme and Microbial Technology, 46, 568–574.

    Article  CAS  Google Scholar 

  • Qiu, J., Su, Y., Gelbic, I., et al. (2012). Proteomic analysis of proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus. Aschersonia placenta. Canadian Journal of Microbiology, 58, 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  • Quin, L., Liu, X., Li, J., et al. (2009). Protein profile of Nomuraea rileyi spore isolation from infected silkworm. Current Microbiology, 58, 578–585.

    Article  Google Scholar 

  • Rodrigues, A. M., Kubitschek-Barreira, P. H., Fernandes, G. F., et al. (2015). Two-dimensional gel electrophoresis data for proteomic profiling of Sporothrix yeast cells. Data in Brief, 2, 32–38.

    Article  PubMed  Google Scholar 

  • Rosen, S., Ek, B., Rask, L., et al. (1992). Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. Journal of General Microbiology, 138(12), 2663–2672.

    Article  CAS  PubMed  Google Scholar 

  • Salazar, O. (2008). Bacteria and yeast cell disruption using lytic enzymes. In A. Posh (Ed.), Methods in Molecular Biology (pp. 23–34). Clifton NJ: Humana Press.

    Google Scholar 

  • Santi, L., Silva, W. O. B., Pinto, A. F. M., et al. (2010). Metarhizium anisopliae host-pathogen interaction: Differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biology, 114, 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Segers, R., Butt, T., Kerry, B., et al. (1994). The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 140, 2715–2723.

    Article  CAS  PubMed  Google Scholar 

  • Segers, R., Butt, T., Keen, J., et al. (1995). The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are serologically and functionally related. FEMS Microbiology Letters, 126, 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Segers, R., Butt, T. M., Kerry, B. R., et al. (1996). The role of the proteinase VCP1 produced by the nematophagous Verticillium chlamydosporium in the infection process of nematode eggs. Mycological Research, 100, 421–428.

    Article  CAS  Google Scholar 

  • Shahid, A. A., Rao, Q. A., & Bakhsh, A. (2012). Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity. Archives of Biological Sciences, 64, 21–42.

    Article  Google Scholar 

  • Simpson, R. J. (2003). Preparation of cellular and subcellular extracts. In R. J. Simpson (Ed.), Proteins and proteomics. A laboratory manual (pp. 91–142). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • St. Leger, R. J., Wang, C., & Fang, W. (2011). New perspectives on insect pathogens. Fungal Biology Reviews, 25, 84–88.

    Article  Google Scholar 

  • Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture (2nd ed.). London: CABI.

    Google Scholar 

  • Su, Y., Guo, Q., Tu, J., et al. (2013). Proteins differentially expressed in conidia and mycelia of the entomopathogenic fungus Metarhizium anisopliae sensu stricto. Canadian Journal of Microbiology, 59, 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov, V., Lopez-Llorca, L., Salinas, J., et al. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35, 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., et al. (2000). Signal peptide-dependent protein transport in Bacillus subtilis, a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews, 64, 515–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunlid, A., Rosen, S., Ek, B., et al. (1994). Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology, 140, 1687–1695.

    Article  PubMed  Google Scholar 

  • Vega, F. E., Goettel, M. S., Blackwell, M., et al. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2, 149–159.

    Article  Google Scholar 

  • Wang, M., Yang, J., & Zhang, K. Q. (2006a). Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Canadian Journal of Microbiology, 52, 130–139.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R. B., Yang, J. K., Lin, C., et al. (2006b). Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Letters in Applied Microbiology, 42, 589–594.

    CAS  PubMed  Google Scholar 

  • Wang, B., Wu, W., & Liu, X. (2007). Purification and characterization of a neutral serine protease with nematicidal activity from Hirsutella rhossiliensis. Mycopathologia, 1163, 169–176.

    Article  CAS  Google Scholar 

  • Wang, B., Liu, X., Wu, W., et al. (2009). Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis. Microbiological Research, 164, 665–673.

    Article  CAS  PubMed  Google Scholar 

  • Westermeier, R., & Naven, T. (2002). Expression proteomics. In R. Westermeier & T. Naven (Eds.), Proteomics in practice: A laboratory manual of proteome analysis (pp. 11–160). Weinheim: Wiley-VCH Verlag-GmbH.

    Chapter  Google Scholar 

  • Yang, J., Li, J., Liang, L., et al. (2007a). Cloning and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys conoides. Archives of Microbiology, 188, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Liang, L., Zhang, Y., et al. (2007b). Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Applied Microbiology and Biotechnology, 75, 557–565.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. K., Ye, F. P., Mi, Q. L., et al. (2008). Purification and cloning of an extracellular serine protease from the nematode-trapping fungus Monacrosporium cystosporium. Journal of Microbiology and Biotechnology, 18, 852–858.

    CAS  PubMed  Google Scholar 

  • Yang, J., Wang, L., Ji, X., et al. (2011). Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathogens, 7(9), e1002179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Spanish Ministry of Economy and Competitiveness Grant AGL 2015-66833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Escudero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Escudero, N., Gómez-Vidal, S., Lopez-Llorca, L.V. (2017). Proteomics. In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_6

Download citation

Publish with us

Policies and ethics