Advertisement

Interactions Between Pochonia chlamydosporia and Nematodes

  • Thalita S. Avelar Monteiro
  • Everaldo A. Lopes
  • Harry C. Evans
  • Leandro Grassi de FreitasEmail author
Chapter
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Pochonia parasitizes the eggs and females of plant-parasitic nematodes (PPN). The fungus-nematode interaction involves a complex series of events which can be affected by the environment. Thus, an understanding of the bionomics of this interaction is essential in order to improve the efficiency of the biological management of PPN. In this chapter, we provide an overview of the process of infection of nematodes by Pochonia and the role of the environment on the fungus-nematode interaction. Firstly, we focus on the events and the mechanisms underlying adhesion, penetration and colonisation of nematodes by Pochonia. We discuss how the infection process is driven by both mechanical forces, induced by the appressoria, and enzymatic activity, specifically by the serine proteases (P32, VCP1, SCP1) and chitinases. Environmental factors have a profound influence on the Pochonia-nematode interaction and these are discussed in detail. Temperature, pH, soil type, soil microbiota and roots can enhance or reduce the parasitism of the nematode by the fungal antagonist. Finally, we discuss how the method of application of Pochonia and its timing can impact on the establishment of the fungus in the soil and, consequently, on the control of nematodes.

References

  1. Alves PS. (2016). Compatibilidade entre Pochonia chlamydosporia e Trichoderma spp. no controle de Meloidogyne javanica em tomateiro. MSc dissertation, Universidade Federal de Viçosa, MG, Brazil.Google Scholar
  2. Aro, N., Pakula, T., & Penttila, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29, 719–739.CrossRefPubMedGoogle Scholar
  3. Arora, D. K., Hirsch, P. R., & Kerry, B. R. (1996). PCR-based molecular discrimination of Verticillium chlamydosporium isolates. Mycological Research, 100, 801–809.CrossRefGoogle Scholar
  4. Batista, A. C., & Fonseca, O. M. (1965). Pochonia humicola n. gen. e n. sp., uma curiosa entidade fúngica dos solos do Nordeste do Brasil. Public Institute of Micological Recife, 462, 1–11.Google Scholar
  5. Bird, A. F., & Bird, J. (1991). The structure of nematodes. San Diego: Academic Press.Google Scholar
  6. Bird, A. F., & McClure, M. A. (1976). The tylenchid (Nematoda) egg shell: structure, composition and permeability. Parasitology, 72, 19–28.CrossRefGoogle Scholar
  7. Bordallo, J. J., Lopez-Llorca, L. V., Jansson, H.-B., et al. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. The New Phytologist, 154, 491–499.CrossRefGoogle Scholar
  8. Bourne, J. M., & Kerry, B. R. (1999). Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biology and Biochemistry, 31, 75–84.CrossRefGoogle Scholar
  9. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  10. Brakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11, 21–32.CrossRefPubMedGoogle Scholar
  11. Ceiro, W. G., Arévalo, J., Puertas, A. N., et al. (2014). Efecto de concentraciones de NaCl sobre el crecimiento micelial y la esporulación de Pochonia chlamydosporia (Goddard) Zare y Gams en medio PDA y suelo. Revista de Protección Vegetal, 29, 122–127.Google Scholar
  12. Chan, Y. L., Cai, D., Taylor, P. W. J., et al. (2010). Adverse effect of the chitinolytic enzyme PjCHI-1 in transgenic tomato on egg mass production and embryonic development of Meloidogyne incognita. Plant Pathology, 59, 922–930.CrossRefGoogle Scholar
  13. Clarke, A. J., Cox, P. M., & Shepherd, A. M. (1967). The chemical composition of the egg shells of the potato cyst-nematode, Heterodera rostochiensis Woll. The Biochemical Journal, 104, 1056–1060.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cook, R. J., & Baker, K. F. (1983). Why biological control? In R. J. Cook & K. F. Baker (Eds.), The nature and practice of biological control of plant pathogens (pp. 1–29). St. Paul: American Phytopathological Society.Google Scholar
  15. Dallemole-Giaretta, R., Freitas, L. G., Lopes, E. A., et al. (2015). Pochonia chlamydosporia promotes the growth of tomato and lettuce plants. Acta Scientiarum Agronomy, 37, 417–423.CrossRefGoogle Scholar
  16. Di Cera, E. (2009). Serine proteases. International Union Biochemical Molecular Biological Life, (5), 510–515.Google Scholar
  17. Dos Santos, V. C., Curtis, R. H. C., & Abrantes, I. (2014). The combined use of Pochonia chlamydosporia and plant defense activators – a potential sustainable control strategy for Meloidogyne chitwoodi. Phytopathologia Mediterranea, 1, 66–74.Google Scholar
  18. Escudero, N., & Lopez-Llorca, N. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.CrossRefGoogle Scholar
  19. Escudero, N., Marhuenda-Egea, F. C., Ibanco-Cañete, R., et al. (2014). A metabolomic approach to study the rhizodeposition in the tritrophic interaction: Tomato, Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics, 10, 788–804.CrossRefGoogle Scholar
  20. Escudero, N., Ferreira, S. R., & Lopez-Moya, F. (2016). Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biology, 120, 572–585.CrossRefPubMedGoogle Scholar
  21. Esteves, I., Peteira, B., Atkins, S. D., et al. (2009). Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycological Research, 113, 867–876.CrossRefPubMedGoogle Scholar
  22. Ferreira, P. A., Ferraz, S., Lopes, E. A., et al. (2008). Parasitismo de ovos de Meloidogyne exigua por fungos nematófagos e estudo da compatibilidade entre os isolados fúngicos. Revista Trópica: Ciencias Agrárias e Biológicas, 3, 15–21.Google Scholar
  23. Gayad, S. K. (1961). Production of symptoms of barley leaf spot disease by cultural filtrates of Helminthosporium sativum. Nature, 191, 725–726.CrossRefGoogle Scholar
  24. Hellwig, V., Mayer-Bartschmid, A., Muller, H., et al. (2003). Pochonins A-F, new antiviral and anti-parasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. Journal of Natural Products, 66, 829–837.CrossRefPubMedGoogle Scholar
  25. Huang, X., Zhao, N., & Zhang, K. (2004). Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Research in Microbiology, 155, 811–816.CrossRefPubMedGoogle Scholar
  26. Huang, T.-C., Chang, H.-Y., Hsu, C.-H., et al. (2008). Targeting therapy for breast carcinoma by ATP synthase inhibitor Aurovertin B. Journal of Proteome Research, 7, 1433–1444.CrossRefPubMedGoogle Scholar
  27. Irving, F., & Kerry, B. R. (1986). Variation between strains of the nematophagous fungus Verticillium chlamydosporium Goddard. Factors affecting parasitism of cyst nematode eggs. Nematologica, 32, 474–485.CrossRefGoogle Scholar
  28. Kepler, R. M., Humber, R. A., Bischoff, J. F., et al. (2014). Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia, 106, 811–829.CrossRefPubMedGoogle Scholar
  29. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.CrossRefPubMedGoogle Scholar
  30. Kerry, B. R., & Bourne, J. M. (1996). Importance of rhizosphere interactions in the biological control of plant parasitic nematodes: a case study using Verticillium chlamydosporium. Pesticide Science, 47, 69–75.CrossRefGoogle Scholar
  31. Kerry, B. R., Irving, F., & Hornsey, J. C. (1986). Variation between strains of the nematophagous fungus Verticillium chlamydosporium Goddard. Factors affecting growth in vitro. Nematologica, 32, 461–473.CrossRefGoogle Scholar
  32. Khambay, B. P. S., Bourne, J. M., Cameron, S., et al. (2000). A nematicidal metabolite from Verticillium chlamydosporium. Pest Management Science, 56, 1098–1099.CrossRefGoogle Scholar
  33. Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2004). Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31, 346–352.CrossRefGoogle Scholar
  34. Kumar, J., Schafer, P., Huckelhoven, R., et al. (2002). Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Molecular Plant Pathology, 3, 185–195.CrossRefPubMedGoogle Scholar
  35. Larriba, E., Martín-Nieto, J., & Lopez-Llorca, L. V. (2012). Gene cloning, molecular modeling, and phylogenetics of serine protease P32 and serine carboxypeptidase SCP1 from nematophagous fungi Pochonia rubescens and Pochonia chlamydosporia. Canadian Journal of Microbiology, 58, 815–827.CrossRefPubMedGoogle Scholar
  36. Larriba, E., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.CrossRefPubMedGoogle Scholar
  37. Larriba, E., Jaime, M. D. L. A., Nislow, C., et al. (2015). Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. Journal of Plant Research, 128, 665–678.CrossRefPubMedGoogle Scholar
  38. Li, J., Yu, L., Yang, J., et al. (2010). New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evolutionary Biology, 10, 1.CrossRefGoogle Scholar
  39. Liu, S. Q., Meng, Z. H., Yang, J. K., et al. (2007). Characterizing structural features of cuticle-degrading proteases from fungi by molecular modeling. BMC Structural Biology, 7, 1.CrossRefGoogle Scholar
  40. Lopez-Llorca, L. V. (1990). Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Canadian Journal of Microbiology, 36, 530–537.CrossRefGoogle Scholar
  41. Lopez-Llorca, L. V., & Boag, B. (1990). Inhibition of Verticillium suchlasporium and other nematophagous fungi by bacteria colonizing Heterodera avenae females. Nematologia Mediterranea, 18, 233–237.Google Scholar
  42. Lopez-Llorca, L. V., & Claugher, D. (1990). Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron and Microscopica Acta, 21, 125–130.CrossRefGoogle Scholar
  43. Lopez-Llorca, L. V., & Fry, S. C. (1988). Dityrosine, trityrosine and tetratyrosine, potential cross-links in structural proteins of plant-parasitic nematodes. Nematologica, 35, 165–179.CrossRefGoogle Scholar
  44. Lopez-Llorca, L. V., & Robertson, W. M. (1992a). Immumocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Experimental Mycology, 16, 261–267.CrossRefGoogle Scholar
  45. Lopez-Llorca, L. V., & Robertson, W. M. (1992b). Ultrastructure of infection of cyst nematode eggs by the nematophagous fungus Verticillium suchlasporium. Nematologica, 39, 65–74.CrossRefGoogle Scholar
  46. Lopez-Llorca, L. V., Moya, M., & Llinares, A. (1993). Effect of pH on growth and pigment production of nematophagous and entomogenous fungi. Micologia e Vegetazione Mediterranea, 8, 107–112.Google Scholar
  47. Lopez-Llorca, L. V., Olivares-Bernabeu, C., Salinas, J., et al. (2002). Pre-penetration events in fungal parasitism of nematode eggs. Mycological Research, 106, 499–506.CrossRefGoogle Scholar
  48. Lopez-Llorca, L., Gómez-Vidal, S., Monfort, E., et al. (2010). Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genetics and Biology, 47, 342–351.CrossRefPubMedGoogle Scholar
  49. Luambano, N. D., Manzanilla-López, R. H., Kimenju, J. W., et al. (2015). Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biological Control, 80, 23–29.CrossRefGoogle Scholar
  50. Manzanilla-López, R. H., Atkins, S. D., Clark, I. M., et al. (2009a). Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Science and Technology, 19, 391–406.CrossRefGoogle Scholar
  51. Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2009b). Rapid and reliable DNA extraction and PCR fingerprinting methods to discriminate multiple biotypes of the nematophagous fungus Pochonia chlamydosporia isolated from plant rhizospheres. Letters in Applied Microbiology, 48, 71–76.CrossRefPubMedGoogle Scholar
  52. Manzanilla-López, R. H., Esteves, I., Powers, S. J., et al. (2011). Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. Annals of Applied Biology, 159, 118–129.CrossRefGoogle Scholar
  53. Manzanilla-López, R. H., Esteves, I., Finetti-Sialer, M. M., et al. (2013). Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. Journal of Nematology, 45, 1–7.PubMedPubMedCentralGoogle Scholar
  54. Manzanilla-López, R. H., Devonshire, J., Ward, E., et al. (2014). A combined cryo-scanning electron microscopy/cryoplaning approach to study the infection of Meloidogyne incognita eggs by Pochonia chlamydosporia. Nematology, 16, 1059–1067.CrossRefGoogle Scholar
  55. Medeiros, H. A., Resende, R. S., Ferreira, F. C., et al. (2015). Induction of resistance in tomato against Meloidogyne javanica by Pochonia chlamydosporia. Nematoda, 2, 10015–10022.Google Scholar
  56. Mi, Q., Yang, J., Ye, F., et al. (2010). Cloning and over expression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infecting against nematodes. Process Biochemistry, 45, 810–814.CrossRefGoogle Scholar
  57. Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaemannomyces graminis var. tritici & development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.CrossRefGoogle Scholar
  58. Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2006). In vitro soil receptivity assays to egg parasitic nematophagous fungi. Mycological Progress, 5, 18–23.CrossRefGoogle Scholar
  59. Monteiro TSA. (2013). Controle biológico do nematoide das galhas, Meloidogyne javanica, e promoção de crescimento vegetal com os fungos Pochonia chlamydosporia e Duddingtonia flagrans. MSc Dissertation, Universidade Federal de Viçosa, MG, Brazil.Google Scholar
  60. Morgan-Jones, G., White, J. F., & Rodriguez-Kabana, R. (1983). Phytonematode pathology: ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica, 13, 245–260.Google Scholar
  61. Morton, C. O., Hirsch, P. R., Peberdy, J. P., et al. (2003). Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.CrossRefPubMedGoogle Scholar
  62. Morton, C. O., Hirsch, P. R., & Kerry, B. R. (2004). Infection of plant-parasitic nematodes by nematophagous fungi – review of the application of molecular biology to understand infection process and to improve biological control. Nematology, 6, 161–170.CrossRefGoogle Scholar
  63. Moulin, E., Barluenga, S., & Winssinger, N. (2005). Concise synthesis of Pochonin A, an HSP90 inhibitor. Organic Letters, 25, 5637–5639.CrossRefGoogle Scholar
  64. Nagesh, M., Hussaini, S. S., Ramanujam, B., et al. (2007). Molecular identification, characterization, variability and infectivity of Indian isolates of the nematophagous fungus Pochonia chlamydosporia. Nematologia Mediterranea, 35, 47–56.Google Scholar
  65. Nahar, P., Ghormade, V., & Deshpande, M. V. (2004). The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. Journal of Invertebrate Pathology, 85, 80–88.CrossRefPubMedGoogle Scholar
  66. Nasu EGC. (2013). Tratamento de sementes de soja e algodão com Pochonia chlamydosporia no controle de Meloidogyne incognita e histopatologia da inteiração tritrófica. Doctoral thesis, Universidade Federal de Viçosa, MG, Brazil.Google Scholar
  67. Nicholson, R. L., & Moraes, W. B. C. (1980). Survival of Colletotrichum graminicola: importance of the spore matrix. Phytopathology, 70, 255–261.CrossRefGoogle Scholar
  68. Niu, X., Wang, Y., Chu, Y., et al. (2010). Nematode toxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Food Agricultural Chemistry, 58, 828–834.CrossRefGoogle Scholar
  69. Olivares-Bernabeu, C. M., & Lopez-Llorca, L. V. (2002). Fungal egg-parasites of plant- parasitic nematodes from Spanish soils. Revista Iberoamericana de Micología, 19, 104–110.Google Scholar
  70. Palma-Guerrero, J., Jansson, H-B., Salinas, J., et al. (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology 104, 541–553.Google Scholar
  71. Palma-Guerrero, J., Gómez-Vidal, S., Tikhonov V. E., et al. (2010). Comparative analysis of extracellular proteins from Pochonia chlamydosporia grown with chitosan or chitin as main carbon and nitrogen sources. Enzyme and Microbial Technology, 46, 568–574.Google Scholar
  72. Perry, R. N., & Trett, M. W. (1986). Ultrastructure of the egg shell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue de Nématologie, 9, 399–403.Google Scholar
  73. Perry, R. N., & Wharton, D. A. (2011). Survival of parasitic nematodes outside the host. In R. N. Perry & M. Moens (Eds.), Molecular and physiological basis of nematode survival (pp. 1–22). Wallingford: CAB International.CrossRefGoogle Scholar
  74. Podestá GS. (2010). Aplicação de Pochonia chlamydosporia em pré-plantio para potencializar o controle de Meloidogyne javanica em tomate e alface. MSc dissertation, Universidade Federal de Viçosa, MG, Brazil.Google Scholar
  75. Podestá, G. S., Dallemole-Giaretta, R., Freitas, L. G., et al. (2009). Atividade nematófaga de Pochonia chlamydosporia em solo natural ou autoclavado sobre Meloidogyne javanica. Nematologia Brasileira, 32, 191–193.Google Scholar
  76. Segers, R., Butt, T., Kerry, B. R., et al. (1994). The nematophagous fungus Verticillium chlamydosporium produces a chymoeslastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 140, 2715–2723.CrossRefPubMedGoogle Scholar
  77. Segers, R., Butt, T. M., Kerry, B. R., et al. (1995). The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are functionally and serologically related. FEMS Microbiology Letters, 126, 227–231.CrossRefPubMedGoogle Scholar
  78. Segers, R., Butt, T. M., Kerry, B. R., et al. (1996). The role of the proteinase VCPI produced by the nematophagous fungus Verticillium chlamydosporium in the infection process of nematode eggs. Mycological Research, 100, 421–428.CrossRefGoogle Scholar
  79. Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J., et al. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35, 67–78.CrossRefPubMedGoogle Scholar
  80. Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385–417.CrossRefPubMedGoogle Scholar
  81. Verdejo-Lucas, S., Sorribas, F. J., Ornat, C., et al. (2003). Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathology, 52, 521–528.CrossRefGoogle Scholar
  82. Wang, E. L. H., & Bergeson, G. B. (1974). Biochemical changes in root exudate and xylem sap of tomato plants infected with Meloidogyne incognita. Journal of Nematology, 6, 194–202.PubMedPubMedCentralGoogle Scholar
  83. Wang, Y. L., Li, L. F., Li, D. X., et al. (2015). Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. Journal of Agricultural and Food Chemistry, 63, 6577–6587.CrossRefPubMedGoogle Scholar
  84. Ward, E., Kerry, B. R., Manzanilla-López, R. H., et al. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol. PloS One, 7, e35657.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wharton, D. A. (2011). Cold tolerance. In R. N. Perry & D. A. Wharton (Eds.), Molecular and physiological basis of nematode survival (pp. 182–204). Wallingford: CAB International.CrossRefGoogle Scholar
  86. Yang, J., Tian, B., Liang, L., et al. (2007). Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnology, 75, 21–31.CrossRefPubMedGoogle Scholar
  87. Yen, J.-H., Niblack, T. L., Karr, A. L., et al. (1996). Seasonal biochemical changes in eggs of Heterodera glycines in Missouri. Journal of Nematology, 28, 442–450.PubMedPubMedCentralGoogle Scholar
  88. Zare, R., Gams, W., & Culham, A. (2000). A revision of Verticillium sect. Prostrata I. Phylogenetic studies using ITS sequences. Nova Hedwigia, 71, 465–480.Google Scholar
  89. Zare, R., Gams, W., & Evans, H. C. (2001). A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 73, 51–86.Google Scholar
  90. Zavala-Gonzalez, E. A., Escudero, N., Lopez-Moya, F., et al. (2015). Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. The Annals of Applied Biology, 166, 472–483.CrossRefGoogle Scholar
  91. Zou, C.-S., Mo, M.-H., Y-Q, G., et al. (2007). Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry, 39, 2371–2379.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thalita S. Avelar Monteiro
    • 1
  • Everaldo A. Lopes
    • 2
  • Harry C. Evans
    • 3
  • Leandro Grassi de Freitas
    • 1
    Email author
  1. 1.Departamento de FitopatologíaUniversidade Federal de ViçosaMinas GeraisBrazil
  2. 2.Instituto de Ciências Agrárias, Campus de Rio ParanaíbaUniversidade Federal de ViçosaRio ParanaíbaBrazil
  3. 3.CAB InternationalEghamUK

Personalised recommendations