Biology and Management of Pochonia chlamydosporia and Plant-Parasitic Nematodes

  • Rosa H. Manzanilla-LópezEmail author
  • Ivânia Esteves
  • Jean Devonshire
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


The nematophagous fungus Pochonia chlamydosporia (Clavicipitaceae) is a facultative parasite of major plant-parasitic nematodes pests such as cyst (Globodera spp., Heterodera spp.), root-knot (Meloidogyne spp.), false root-knot (Nacobbus spp.) and reniform (Rotylenchulus reniformis) nematodes. The potential of P. chlamydosporia as a biological control agent and biopesticide has been the subject of numerous studies aimed at understanding the micro-ecological conditions that allow the fungus to thrive in the soil and rhizosphere environments. Pochonia survives in soil in the absence of plant and nematode hosts and can also behave as an endophyte. Research evidence points to a physiological ‘switch’ from the saprophytic to the parasitic stage that is triggered by nutrition. The basic biology of the fungus and sedentary endoparasitic plant nematodes is reviewed to provide insights into the fungus multitrophic behaviour, as well as its importance as a biocontrol agent within an integrated pest management approach.



The authors acknowledge Penny R. Hirsch (Rothamsted Research) and Elaine Ward, (formerly at Rothamsted Research), DFID grant BB/F003994/1 and Defra Link Project LK0966. Light microscopy and SEM studies were performed at Bioimaging Rothamsted Research facilities.


  1. Agudelo, P., Robbins, R. T., Stewart, J. M. D., et al. (2004). Glycoproteins in the gelatinous matrix of Rotylenchulus reniformis. Nematropica, 34, 229–234.Google Scholar
  2. Aguinaldo, A. M., Turbeville, J. M., Linford, L. S., et al. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–493.PubMedCrossRefGoogle Scholar
  3. Anderson, R. M., & May, R. M. (1981). The population dynamics of microparasites and their invertebrate host. Philosophical Transactions of the Royal Society B, 291, 451–524.CrossRefGoogle Scholar
  4. Atkins, S. D., Hidalgo-Díaz, L., Kalisz, H., et al. (2003a). Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Management Science, 59, 183–189.PubMedCrossRefGoogle Scholar
  5. Atkins, S. D., Hidalgo-Díaz, L., Clark, I. M., et al. (2003b). Approaches for monitoring the release of P. chlamydosporia var. catenulata, a biological control agent of root-knot nematodes. Mycological Research, 107, 206–212.PubMedCrossRefGoogle Scholar
  6. Atkins, S. D., Sosnowska, D., Evans, V. J., et al. (2004). Investigation of three nematophagous fungi in two potato cyst nematode suppressive soils. Multitrophic Interactions in Soil and Integrated Control IOBC wprs Bulletin, 27, 1–8.Google Scholar
  7. Ayatollahy, E., Fatemy, S., & Etebarian, H. R. (2008). Potential for biological control of Heterodera schachtii by Pochonia chlamydosporia var. chlamydosporia on sugar beet. Biocontrol Science and Technology, 18, 157–167.CrossRefGoogle Scholar
  8. Baldwin, J. G., Nadler, S. A., & Adams, B. J. (2004). Evolution of plant parasitism among nematodes. Annual Review of Phytopathology, 42, 83–105.PubMedCrossRefGoogle Scholar
  9. Bordallo, J. J., Lopez-Llorca, L. V., Hansson, H. B., et al. (2002). Colonization of plant roots by egg-parasitic and nematode trapping-fungi. The New Phytologist, 154, 491–499.CrossRefGoogle Scholar
  10. Bourne, J. M., & Kerry, B. R. (1999). Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biology and Biochemistry, 31, 75–84.CrossRefGoogle Scholar
  11. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  12. Bruck, D. J. (2010). Fungal entomopathogens in the rhizosphere. BioControl, 55, 103–112.CrossRefGoogle Scholar
  13. Butt, T. M., Segers, R., Leal, S. C., et al. (1998). Variation in the subtilisins of fungal pathogens of insects and nematodes. In P. D. Bridge, Y. Couteaudier, & J. M. Clarkson (Eds.), Molecular variability of fungal pathogens (pp. 149–169). Wallingford: CABI International.Google Scholar
  14. Campos, H. D., & Campos, V. P. (1997). Efeito da época e forma de aplicação dos fungus Arthrobototrys conocides, Arthobotrys musiformis, Paecilomyces lilacinus e Verticillium chlamydosporium no controle de Meloidogyne exigua do cafeeiro. Fitopatologia Brasileira, 22, 361–365.Google Scholar
  15. Chen, S. Y., & Chen, F. J. (2003). Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. Journal of Nematology, 35, 271–277.PubMedPubMedCentralGoogle Scholar
  16. Cheng-Gang, R., & Chuan-Chao, D. (2012). Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biology, 12, 128. doi: 10.1186/1471-2229-12-128.CrossRefGoogle Scholar
  17. Clyde, J. M. F. (1993). The cyst nematode pathogen Verticillium chlamydosporium. PhD Thesis, The University of Leeds, Department of Pure and Applied Biology.Google Scholar
  18. Cristóbal-Alejo, J., Mora-Aguilera, G., Manzanilla-López, R. H., et al. (2006). Epidemiology and integrated control of Nacobbus aberrans on tomato (Lycopersicon esculentum mill.) in Mexico. Nematology, 8, 727–737.CrossRefGoogle Scholar
  19. Crump, D. H. (1991). Estimation of suppressiveness and isolation of fungal parasites of cyst nematodes. In B. R. Kerry & D. G. Crump (Eds.), Methods for studying nematophagous fungi (IOBC / WPRS Bulletin, XIV (2), pp. 18–22). Wageningen: International Union of Biological Sciences.Google Scholar
  20. Curtis, H. C. R., Robinson, F., & Perry, R. N. (2009). Hatch and host location. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 139–162). Wallingford: CABI.CrossRefGoogle Scholar
  21. D’Angieri, C. N. F., & Campos, V. P. (1997). Control de Meloidogyne javanica em Jaborandi (Pilocarpus microphyllus) com Arthrobotrys conoides, Paecilomyces lilacinus e Verticillium chlamydosporia. Nematologia Brasileira, 21, 23–30.Google Scholar
  22. De Leij, F. A. A. M., Kerry, B. R., & Dennehy, J. A. (1992a). The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognia. Nematologica, 38, 112–122.CrossRefGoogle Scholar
  23. De Leij, F. A. A. M., Davies, K. G., & Kerry, B. R. (1992b). The use of Verticillium chlamydosporium and Pasteuria penetrans alone and in combination to control Meloidogyne incognita on tomato plants. Fundamental and Applied Nematology, 15, 235–242.Google Scholar
  24. Dunn, C. W., Hejnol, A., Matus, D. Q., et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–749.PubMedCrossRefGoogle Scholar
  25. Eapen, J. A., Beena, B., & Ramana, K. V. (2009). Field evaluation of Trichoderma harzianum, Pochonia chlamydosporia and Pasteuria penetrans in a root knot nematode infested black pepper (Piper nigrum L.) garden in India. Journal of Plantation Crops, 37, 196–200.Google Scholar
  26. Eisenback, J. D., & Hunt, D. J. (2009). General morphology. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 18–54). Wallingford: CABI.CrossRefGoogle Scholar
  27. Escudero, N., & Lopez-Llorca, L. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.CrossRefGoogle Scholar
  28. Esteves, I. (2007). Factors affecting the performance of Pochonia chlamydosporia as a biological control agent for nematodes. PhD Thesis, Cranfield University.Google Scholar
  29. Evans, A. F., & Perry, R. N. (2009). Survival mechanisms. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 201–222). Wallingford: CABI.CrossRefGoogle Scholar
  30. Filipello-Marchisio, V. (1976). Sull’attivita antibiótica di Diheterospora chlamydosporia e di Oidiodendron truncatum. Allionia, 21, 67–71.Google Scholar
  31. Flores-Camacho, R., Manzanilla-López, R. H., Cid del Prado-Vera, I., et al. (2007). Control of Nacobbus aberrans (Thorne, 1935) Thorne y Allen, 1944 with Pochonia chlamydosporia (= Verticillium chlamydosporium) (Goddard) Zare and W. Gams. Revista Mexicana de Fitopatología, 25, 26–34.Google Scholar
  32. Freitas, L. G., Dallemole-Giaretta, R., Ferraz, S., et al. (2009). Controle biológico de nematoides: Estudo de casos. In L. Zambolim & M. C. Picanço (Eds.), Controle biológico de pragas e doenças: exemplos práticos (pp. 41–82). Viçosa: UFV/DFP.Google Scholar
  33. Gams, W. (1988). A contribution to the knowledge of nematophagous species of Verticillium. Netherlands Journal of Plant Pathology, 94, 123–148.CrossRefGoogle Scholar
  34. Gaspard, J. T., Jaffee, B. A., & Ferris, H. (1990). Meloidogyne incognita survival in soil infested with Paecilomyces lilacinus and Verticillium chlamydosporium. Journal of Nematology, 22, 176–181.PubMedPubMedCentralGoogle Scholar
  35. Giné, A., Carrasquilla, M., Martínez-Alonso, M., et al. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science. doi: 10.3389/fpls.2016.00164.
  36. Hickey, P. C., Jacobson, N. D., & Glass, L. N. (2002). Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genetics and Biology, 37, 109–119.PubMedCrossRefGoogle Scholar
  37. Jackson, M., & Jaronski, S. T. (2009). Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 113, 842–850.PubMedCrossRefGoogle Scholar
  38. Jacobs, H., Gray, S. N., & Crump, D. H. (2003). Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycological Research, 107, 47–56.PubMedCrossRefGoogle Scholar
  39. Jaffee, B. A., Philips, R., Muldoon, A., et al. (1992). Density-dependant host-pathogen dynamics in soil microcosms. Ecology, 73, 495–506.CrossRefGoogle Scholar
  40. Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, 159–185.CrossRefGoogle Scholar
  41. Jones, J. T., Haegeman, A., Danchin, E. G. T., et al. (2013). Top 10 plant-parasitic nematodes. Molecular Plant Pathology. doi: 10.1111/mpp.12057.
  42. Kerry, B. R. (1988) Two microorganisms for the control of plant parasitic nematodes. Proceedings of the Brighton Crop Protection Conference-Pests and diseases, pp. 603–607.Google Scholar
  43. Kerry, B. R. (1991). Methods for studying the growth and survival of the nematophagous fungus, Verticillium chlamydosporium Goddard, in soil. IOBC/WPRS Bulletin, 14, 34–38.Google Scholar
  44. Kerry, B. R. (1997). Biological control of nematodes: Prospects and opportunities. FAO corporate document repository. Plant nematode problems and their control in the Near East Region (FAO Plant Production and Protection Paper, 144). http://www.fao.docrep/V9978E00.htm. Accessed 20 Oct 2016
  45. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.PubMedCrossRefGoogle Scholar
  46. Kerry, B. R., & Crump, D. H. (1977). Observations on fungal parasites of females and eggs of the cereal cyst-nematode, Heterodera avenae, and other cyst nematodes. Nematologica, 23, 193–201.CrossRefGoogle Scholar
  47. Kerry, B. R., Kirkwood, I. A., De Leij, F. A. A. M., et al. (1993). Growth and survival of Verticillium chlamydosporium Goddard, a parasite of nematodes in soil. Biocontrol Science and Technology, 3, 355–365.CrossRefGoogle Scholar
  48. Kirk, P. M., Cannon, P. F., Minter, D. W., et al. (2008). Dictionary of the fungi (10th ed.). Wallingford: CAB International.Google Scholar
  49. Kok, C. J., Papert, A., & Hok-A-Hin, C. H. (2001). Microflora of Meloidogyne egg masses: Species composition, population density and effect on the biocontrol agent Verticillium chlamydosporium (Goddard). Nematology, 3, 729–734.CrossRefGoogle Scholar
  50. Leinhos, G. M. E., & Buchenauer, H. (1992). Inhibition of rust diseases of cereals by metabolic products of Verticillium chlamydosporium. Journal of Phytopathology, 136, 177–193.CrossRefGoogle Scholar
  51. Lin, R., Liu, C., Shen, B., et al. (2015). Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiology, 15, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lopez-Llorca, L. A., & Boag, B. (1990). Inhibition of Verticillium suchlasporium and other nematophagous fungi by bacteria colonizing Heterodera avenae females. Nematologia Mediterranea, 18, 233–237.Google Scholar
  53. Lopez-Llorca, L. V., & Boag, B. (1993). Biological properties of a red pigment produced by the nematophagous fungus Verticillium suchlasporium. Nematologia Mediterranea, 21, 143–149.Google Scholar
  54. Lopez-Llorca, L. V., & Claugher, D. (1990). Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron and Microscopica Acta, 21, 125–130.CrossRefGoogle Scholar
  55. Lopez-Llorca, L. V., & Duncan, G. H. (1988). A study of the cereal cyst nematode (Heterodera avenae) by scanning electron microscopy. Canadian Journal of Microbiology, 34, 613–619.CrossRefGoogle Scholar
  56. Lopez-Llorca, L. V., & Duncan, G. H. (1991). Effects of fungal parasites on cereal cyst nematode (Heterodera avenae Woll.) from naturally infested soil – A scanning electron microscopy study. Canadian Journal of Microbiology, 37, 218–225.CrossRefGoogle Scholar
  57. Lopez-Llorca, L. V., & Jansson, H. B. (2007). Fungal parasites of invertebrates: Multimodal biocontrol agents? In G. D. Robson, P. van West, & G. M. Gadd (Eds.), Exploitation of fungi (pp. 310–335). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  58. Lopez-Llorca, L. V., & Robertson, W. M. (1992). Ultrastructure of infection of cyst nematode eggs by the nematophagous fungus Verticillium suchlasporium. Nematologica, 39, 65–74.CrossRefGoogle Scholar
  59. Lopez-Llorca, L., Olivares-Bernabeu, C., Salinas, J., et al. (2002a). Pre-penetration events in fungal parasitism of nematode eggs. Mycological Research, 106, 499–506.CrossRefGoogle Scholar
  60. Lopez-Llorca, L. V., Bordallo, J. J., Monfort, E., et al. (2002b). Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron, 3, 61–67.CrossRefGoogle Scholar
  61. Lopez-Llorca, L. V., Maciá-Vicente, J. G., & Jansson, H. B. (2008). Mode of action and interactions of nematophagous fungi. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and Biocontrol of vegetable and grains crops nematodes (pp. 51–76). Heidelberg: Springer.Google Scholar
  62. Luambano-Nyoni, N., Manzanilla-Lopez, R. H., Kimenju, J. W., et al. (2015). Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biological Control, 80, 23–29.CrossRefGoogle Scholar
  63. Lumsden, R. D, Frias, T. G., & Gracia, E. R. et al. (1982). Biocontrol of Pythium aphanidermatum on cucumber by microbial isolates from Mexican soils. Phytopathology, 72, 1010 [Abstract].Google Scholar
  64. Maciá-Vicente, J. G., Jansson, H. B., Talbot, N. J., et al. (2009a). Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. The New Phytologist, 182, 213–228.PubMedCrossRefGoogle Scholar
  65. Maciá-Vicente, J. G., Rosso, L. C., Ciancio, A., et al. (2009b). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. The Annals of Applied Biology, 155, 391–401.CrossRefGoogle Scholar
  66. MacKintosh, G. M. C. D. (1960). The morphology of the Brassica eelworm Heterodera cruciferae, Franklin 1945. Nematologica, 5, 58–65.Google Scholar
  67. Manzanilla-López, R. H., & Hunt, D. J. (2008). Tropical plant and soil nematodes: Diversity and interactions. In K. Del Claro, P. S. Oliveira, V. Rico-Gray, et al. (Eds.), International Commission on Tropical Biology and Natural Resources, Encyclopaedia of Life Support Systems (EOLSS). Oxford: Eolss Publishers. [].Google Scholar
  68. Manzanilla-López, R. H., Rowe, J., Gravato-Nobre, M., et al. (1998). External secretions from the false root-knot nematode, Nacobbus aberrans. Nematologica, 44, 326–330.CrossRefGoogle Scholar
  69. Manzanilla-López, R. H., Atkins, S. D., Clark, I. M., et al. (2009). Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Science and Technology, 19, 391–406.CrossRefGoogle Scholar
  70. Manzanilla-López, R. H., Esteves, I., Powers, S. J., et al. (2011a). Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. The Annals of Applied Biology, 159, 118–129.CrossRefGoogle Scholar
  71. Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2011b). Exploring competitiveness and variation in the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia and its significance for biological control. Bulletin OILB/SROP, 63, 37–40.Google Scholar
  72. Manzanilla-López, R. H., Devonshire, J., Ward, E., et al. (2014). A combined cryo-scanning electron microscopy/cryoplaning approach to study the infection of Meloidogyne incognita eggs by Pochonia chlamydosporia. Nematology, 16, 1059–1067.CrossRefGoogle Scholar
  73. Mauchline, T. H., Kerry, B. R., & Hirsch, P. (2002). Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Applied and Environmental Microbiology, 68, 1846–1853.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mauchline, T. H., Kerry, B. R., & Hirsch, P. (2004). The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycological Research, 108, 106–169.CrossRefGoogle Scholar
  75. Meyer, S. L., Huettel, R. N., Liu, X. Z., et al. (2004). Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology, 6, 23–32.CrossRefGoogle Scholar
  76. Mi, Q., Yang, J., Ye, F., et al. (2010). Cloning and overexpression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochemistry, 45, 810–814.CrossRefGoogle Scholar
  77. Mo, M., Xu, C., & Zhang, K. (2005). Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio, and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture. Mycopathologia, 159, 381–387.PubMedCrossRefGoogle Scholar
  78. Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaemannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.CrossRefGoogle Scholar
  79. Morgan-Jones, G., White, J. F., & Rodriguez-Kabana, R. (1983). Phytonematode pathology: Ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica, 13, 245–260.Google Scholar
  80. Morton, C. O., Hirsch, P. R., Peberdy, J. P., & Kerry, B. R. (2003a). Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.PubMedCrossRefGoogle Scholar
  81. Morton, C. O., Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2003b). PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 198–205.PubMedCrossRefGoogle Scholar
  82. Mukhtar, T., & Pervaz, I. (2003). In vitro evaluation of ovicidal and larvicidal effects of culture fíltrate of Verticillium chlamydosporium against Meloidogyne javanica. International Journal of Agricultural and Biology, 5, 576–579.Google Scholar
  83. Niblack, T. L., & Karr, A. L. (1994). Source of antimicrobial activity in the gelatinous matrix of Heterodera glycines. Journal of Nematology, 26, 561.Google Scholar
  84. O’Flaherty, S. M., Hirsch, P. R., & Kerry, B. R. (2003). The influence of the root-knot nematode Meloidogyne incognita, the nematicide aldicarb and the nematophagous fungus Pochonia chlamydosporia on heterotrophic bacteria in soil and the rhizosphere. European Journal of Soil Science, 54, 759–766.CrossRefGoogle Scholar
  85. Olivares-Bernabeu, C. M., & Lopez-Llorca, L. V. (2002). Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. Revista Iberoamericana de Micología, 19, 104–110.Google Scholar
  86. Orion, D., & Kritzman, G. (1991). Antimicrobial activity of Meloidogyne javanica gelatinous matrix. Revue de Nématologie, 14, 481–483.Google Scholar
  87. Papert, A., & Kok, C. J. (2000). Population size and community metabolic profile of the bacterial population of Meloidogyne hapla egg masses. Nematology, 2, 581–584.CrossRefGoogle Scholar
  88. Perry, J. N. (1978). A population model for the effect of parasitic fungi on numbers of the cereal cyst-nematode, Heterodera avenae. Journal of Applied Ecology, 15, 781–787.CrossRefGoogle Scholar
  89. Perry, R. N. (2002). Cuticle, moulting and exsheathment. In L. D. Lee (Ed.), The biology of nematodes (p. 153). Boca Raton: CRC Press Taylor & Francis Group.Google Scholar
  90. Puertas, A., de la Noval, B. M., Martínez, B., et al. (2006). Interacción de Pochonia chlamydosporia var. catenulata con Rhizobium sp., Trichoderma harzianum y Glomus clarum en el control de Meloidogyne incognita. Revista de Protección Vegetal, 21, 80–89.Google Scholar
  91. Renker, C., Otto, P., Schneider, K., et al. (2005). Oribatid mites as potential vectors for soil microfungi: Study of mite-associated fungal species. Microbial Ecology, 50, 518–528.PubMedCrossRefGoogle Scholar
  92. Rodríguez-Kábana, R., & Morgan-Jones, G. (1988). Potential for nematode control by mycofloras endemic in the tropics. Journal of Nematology, 20, 191–203.PubMedPubMedCentralGoogle Scholar
  93. Rosso, L. C., Finetti-Sialer, M. M., Hirsch, P. R., et al. (2011). Transcriptome analysis shows differential gene expression in the saprotrophic to parasitic transition of Pochonia chlamydosporia. Applied Microbiology and Biotechnology, 90, 1981–1994.PubMedCrossRefGoogle Scholar
  94. Sánchez-Moreno, S., Nicola, N. L., Ferris, H., et al. (2009). Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Applied Soil Ecology, 41, 107–117.CrossRefGoogle Scholar
  95. Santana Nunes, J., Rocha de Brito, M., Cunha Zied, D., et al. (2017). Evaluation of the infection process by Lecanicillium fungicola in Agaricus bisporus by scanning microscopy. Revista Iberoamericana de Micología, 34, 36–42.PubMedCrossRefGoogle Scholar
  96. Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In J. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 7–14). De Leon Spring: Society of Nematologists.Google Scholar
  97. Schomaker, C. H., & Been, T. (2013). Quantitative nematology and management. In R. N. Perry & M. Moens (Eds.), Plant nematology (2nd ed., pp. 301–330). Wallingford: CABI.CrossRefGoogle Scholar
  98. Segers, R., Butt, T. M., Keen, J. N., et al. (1995). The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are serologically and functionally related. FEMS Microbiology Letters, 126, 227–232.PubMedCrossRefGoogle Scholar
  99. Segers, R., Butt, T. M., Carder, J. H., et al. (1999). The subtilisins of the fungal pathogens of insects, nematodes and plants: Distribution, and variation. Mycological Research, 103, 395–402.Google Scholar
  100. Sellitto, V. M., Curto, G., DallaValle, E., et al. (2016). Effect of Pochonia chlamydosporia-based formulations and the regulation of root-knot nematodes and plant growth response. Frontiers in Life Science, 9(3), 177–181. doi: 10.1080/21553769.2016.11193827.
  101. Shamim, Q. A., Vicar, S., Ara, J., et al. (2012). Nematicidal potential of culture filtrates of soil fungi associated with rhizosphere and rhizoplane of cultivated and wild plants. Pakistan Journal of Botany, 44, 1041–1046.Google Scholar
  102. Sharma, P., Jha, A. B., Dubey, R. S., et al. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanisms under stressful conditions. Journal of Botany, 2012, 1–26.CrossRefGoogle Scholar
  103. Sharon, E., & Spiegel, Y. (1993). Glycoprotein characterization of the gelatinous matrix in root-knot nematode Meloidogyne javanica. Journal of Nematology, 25, 585–589.PubMedPubMedCentralGoogle Scholar
  104. Sharon, E., Orion, D., & Spiegel, Y. (1993). Binding of soil micro-organisms and red blood cells by the gelatinous matrix and eggs of Meloidogyne javanica and Rotylenchus reniformis. Fundamental and Applied Nematology, 16, 5–9.Google Scholar
  105. Siddiqui, I. A., Atkins, S. D., & Kerry, B. R. (2009). Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. The Annals of Applied Biology, 155, 131–141.CrossRefGoogle Scholar
  106. Song, Z., Shen, L., Zhong, Q., et al. (2016). Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as a bionematicide. Nematology, 18, 719–726.CrossRefGoogle Scholar
  107. Spiegel, Y., & McClure, M. A. (1995). The surface-coat of plant-parasitic nematodes – Chemical composition, origin, and biological role – A review. Journal of Nematology, 27, 127–134.PubMedPubMedCentralGoogle Scholar
  108. Stadler, M., Hans-Volker, T., Katsiou, E., et al. (2003). Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs. Mycological Progress, 2, 95–122.CrossRefGoogle Scholar
  109. Stirling, G. R. (1991). Biological control of nematodes. Wallingford: CAB International.Google Scholar
  110. Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture (2nd ed.). Wallingford: CABI.Google Scholar
  111. Stirling, G. R., & Smith, L. (1998). Field tests of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biological Control, 11, 231–239.CrossRefGoogle Scholar
  112. Sutherland, E. D., & Papavizas, G. C. (1991). Evaluation of oospore hyperparasites for the control of Phytophthora crown rot on pepper. Journal of Phytopathology, 131, 33–39.CrossRefGoogle Scholar
  113. Sykes, D. (1994). The growth and sporulation of Verticillium chlamydosporium. MSc Thesis, University of Manchester.Google Scholar
  114. Tahseen, Q., Clark, I. M., Atkins, S. D., et al. (2005). Impact of the nematophagous fungus Pochonia chlamydosporia on nematode and microbial populations. Communications in Agricultural and Applied Biological Sciences, 70, 81–87.PubMedGoogle Scholar
  115. Tobin, J. D., Haydock, P. P. J., Hare, M. C., et al. (2008). Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallida and G. rostochiensis) in potato crops grown under UK field conditions. Biological Control, 46, 194–201.CrossRefGoogle Scholar
  116. Van Damme, V., Hoedekie, A., & Viaene, N. (2005). Long-term efficacy of Pochonia chlamydosporia for management of Meloidogyne javanica in glasshouse crops. Nematology, 7, 727–736.CrossRefGoogle Scholar
  117. Verdejo-Lucas, S., Sorribas, F. J., Ornat, C., et al. (2003). Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathology, 52, 521–528.CrossRefGoogle Scholar
  118. Viaene, N. M., & Abawi, G. S. (2000). Hirsutella rhossiliensis and Verticillium chlamydosporium as biocontrol agents of the root-knot nematode Meloidogyne hapla on lettuce. Journal of Nematology, 32, 85–100.Google Scholar
  119. Vilchis-Martínez, K., Manzanilla-López, R. H., Powers, S., et al. (2013). Effect of the addition of crude plant extracts on the parasitism of Pochonia chlamydosporia var. chlamydosporia on Meloidogyne incognita. Nematropica, 43, 254–260.Google Scholar
  120. Wang, K., Riggs, R. D., & Crippen, D. (2005). Isolation, selection, and efficacy of Pochonia chlamydosporia for control of Rotylenchulus reniformis on cotton. Phytopathology, 95, 890–893.PubMedCrossRefGoogle Scholar
  121. Ward, E., Kerry, B., Manzanilla-López, R., et al. (2012). The Pochonia chlamydosporia serine protease Gene vcp1 is subject to regulation by carbon, nitrogen and pH: Implications for nematode biocontrol. PloS One, 7(4), e35657.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zare, R., & Gams, W. (2007). Pochonia globispora sp. nov. Nova Hedwigia, 84, 421–428.CrossRefGoogle Scholar
  123. Zare, R., Gams, W., & Evans, H. C. (2001). A revision of Verticillium section Prostrata V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 73, 51–86.Google Scholar
  124. Zou, C. S., Mo, M. H., Gu, Y. Q., et al. (2007). Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry, 39, 2371–2379.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rosa H. Manzanilla-López
    • 1
    Email author
  • Ivânia Esteves
    • 2
  • Jean Devonshire
    • 3
  1. 1.Centro de Desarrollo de Productos Bióticos (Visiting Professor)YautepecMexico
  2. 2.CFE-Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de FreitasUniversity of CoimbraCoimbraPortugal
  3. 3.Formerly at Rothamsted ResearchHarpendenUK

Personalised recommendations