Advertisement

Abstract

The history of the genus Pochonia (Clavicipitaceae, Hypocreales) is charted from the pre- to post-molecular era. The relatively recent use of more sophisticated molecular techniques – as exemplified by multigene phylogenetics – has enabled the unravelling of this convoluted taxonomic tale and there is now light at the end of the tunnel, especially with the realisation of the ‘One fungus, One name’ (1F, 1 N) initiative. The present status of the genus – and its near relatives on nematode hosts – is discussed. Currently, only one species, Pochonia chlamydosporia, is recognised within the genus, with five varieties being delimited, two of which – var. chlamydosporia and var. catenulata – produce sexual morphs on alternate hosts: molluscs (snail eggs) and insects (beetle larvae), respectively. Species originally assigned to Pochonia are now accommodated in the genus Metapochonia. Pochonia chlamydosporia is a multitrophic species, parasitic on, or pathogenic to, both invertebrate and nematode hosts, as well as being a plant symbiont. Finally, recommendations are made for future research: it is expected that the varieties of P. chlamydosporia will be elevated to species rank, whilst it is predicted that many more species will be identified within the genus as intensive and more focused, selective sampling is undertaken, particularly of soils and plant roots in tropical forest ecosystems.

References

  1. Araújo, J. P. M., Evans, H. C., Geiser, D. M., et al. (2015). Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon. Phytotaxa, 220, 224–238.CrossRefGoogle Scholar
  2. Arora, D. K., Hirsch, P. R., & Kerry, B. R. (1996). PCR-based molecular discrimination of Verticillium chlamydosporium isolates. Mycological Research, 100, 801–809.CrossRefGoogle Scholar
  3. Bååth, E. (1991). Tolerance of copper by entomogenous fungi and the use of copper-amended media for isolation of entomogenous fungi from soil. Mycological Research, 95, 1140–1142.CrossRefGoogle Scholar
  4. Barron, G. L. (1968). The genera of Hyphomycetes from soil. Baltimore: Williams & Wilkins.Google Scholar
  5. Barron, G. L. (1980a). Fungal parasites of rotifers: Two new verticillate endoparasites with aerial conidiophores. Canadian Journal of Botany, 58, 432–438.CrossRefGoogle Scholar
  6. Barron, G. L. (1980b). Fungal parasites of rotifers: A new Tolypocladium with underwater conidiation. Canadian Journal of Botany, 58, 439–442.CrossRefGoogle Scholar
  7. Barron, G. L. (1985). Fungal parasites of bdelloid rotifers: Diheterospora. Canadian Journal of Botany, 63, 211–222.CrossRefGoogle Scholar
  8. Barron, G. L., & Onions, A. H. S. (1966). Verticillium chlamydosporium and its relationships to Diheterospora, Stemphyliopsis, and Paecilomyces. Canadian Journal of Botany, 44, 861–869.CrossRefGoogle Scholar
  9. Batista, A. C., & Fonseca, O. M. (1965). Pochonia humicola n. gen. e n. sp., uma curiosa entidade fungica dos solos do Nordeste do Brasil. Publicacões do Instituto de Micologia, Universidade do Recife, 462, 1–11.Google Scholar
  10. Behie, S. W., & Bidochka, M. J. (2014). Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: An additional branch of the soil nitrogen cycle. Applied and Environmental Microbiology, 80, 1553–15560.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Beilharz, V. C., Parberry, D. G., & Swart, H. J. (1982). Dodine: A selective agent for certain soil fungi. Transactions of the British Mycological Society, 79, 505–511.CrossRefGoogle Scholar
  12. Bordallo, J. J., Lopez-Llorca, L., Jansson, H. B., et al. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. The New Phytologist, 154, 491–499.CrossRefGoogle Scholar
  13. Bursnall, L. A., & Tribe, H. T. (1974). Fungal parasitism in cysts of Heterodera. II. Egg parasites of H. schacthtii. Transactions of the British Mycological Society, 62, 595–601.CrossRefGoogle Scholar
  14. CABI. (2014). Lissachatina fulica (giant African land snail). CABI Invasive Species Compendium. Wallingford: CAB International.Google Scholar
  15. Campbell, W. P., & Griffiths, D. A. (1975). The development of thick-walled, multicellular, aerial spores in Diheterospora chlamydosporia (= Verticillium chlamydosporium). Canadian Journal of Microbiology, 21, 963–971.CrossRefGoogle Scholar
  16. Carder, J. H., Segers, R., Butt, T. M., et al. (1993). Taxonomy of the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium based on secreted enzyme activities and RFLP analysis. Journal of Invertebrate Pathology, 62, 178–184.CrossRefGoogle Scholar
  17. Dominik, T., & Majchrowicz, I. (1966). Some new species of fungi from the soil of Conakry. Mycopathologia et Mycologia Applicata, 28, 209–219.CrossRefGoogle Scholar
  18. Evans, H. C., & Samson, R. A. (1982). Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems. I. The Cephalotes (Myrmicinae) complex. Transactions of the British Mycological Society, 79, 431–453.CrossRefGoogle Scholar
  19. Evans, H. C., & Samson, R. A. (1984). Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems. II. The Camponotus (Formicinae) complex. Transactions of the British Mycological Society, 82, 127–150.CrossRefGoogle Scholar
  20. Evans, H. C., & Whitehead, P. F. (2005). Entomogenous fungi of arboreal Coleoptera from Worcestershire, England, including the new species Harposporium bredonense. Mycological Progress, 4, 91–99.CrossRefGoogle Scholar
  21. Evans, H. C., Groden, E., & Bischoff, J. F. (2010). New fungal pathogens of the red ant, Myrmica rubra, from the UK and implications for ant invasions in the USA. Fungal Biology, 114, 451–466.CrossRefPubMedGoogle Scholar
  22. Evans, H. C., Elliott, S. L., & Hughes, D. P. (2011). Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: Four new species described from carpenter ants in Minas Gerais, Brazil. PloS One, 6, e17024.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gams, W. (1971). Cephalosporium-artige Schimmelpilze (Hyphomycetes). Stuttgart: Fischer.Google Scholar
  24. Gams, W. (1988). A contribution to the knowledge of nematophagous species of Verticillium. Netherlands Journal of Plant Pathology, 94, 123–148.CrossRefGoogle Scholar
  25. Gams, W., & Zare, R. (2001). A revision of Verticillium section Prostrata. III. Generic classification. Nova Hedwigia, 72, 329–337.Google Scholar
  26. Gams, W., & Zare, R. (2003). A taxonomic review of the clavicipitaceous anamorphs parasitizing nematodes and other microinvertebrates. In J. F. White, C. W. Bacon, N. L. Hywel-Jones, & J. W. Spatafora (Eds.), Clavicipitalean fungi: Evolutionary biology, chemistry, biocontrol and cultural impacts (pp. 17–73). New York: Marcel Dekker.Google Scholar
  27. Gams, W., Zare, R., & Summerbell, R. C. (2005). Proposal to conserve the generic name Verticillium (anamorphic Ascomycetes) with a conserved type. Taxon, 54, 179.CrossRefGoogle Scholar
  28. Gams, W., Humber, R. A., Jaklitsch, W., et al. (2012). Minimizing the chaos following the loss of Article 59: Suggestions for a discussion. Mycotaxon, 119, 495–507.CrossRefGoogle Scholar
  29. Goddard, N. H. (1913). Can fungi living in agricultural soil assimilate free nitrogen? Botanical Gazette, 56, 249–305.CrossRefGoogle Scholar
  30. Hibbett, D. S., & Taylor, J. W. (2013). Fungal systematics: Is a new age of enlightenment at hand? Nature Reviews Microbiology, 11, 129–133.CrossRefPubMedGoogle Scholar
  31. Hodge, K. T. (2003). Clavicipitaceous anamorphs. In J. F. White, C. W. Bacon, N. L. Hywel-Jones, & J. W. Spatafora (Eds.), Clavicipitalean fungi: Evolutionary biology, chemistry, biocontrol and cultural impacts (pp. 75–123). New York: Marcel Dekker.Google Scholar
  32. Irving, F., & Kerry, B. R. (1986). Variation between strains of the nematophagous fungus, Verticillium chlamydosporium. Nematologica, 32, 474–485.CrossRefGoogle Scholar
  33. Johnson, D., Sung, G.-H., Hywel-Jones, N. L., et al. (2013). Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota). Mycological Research, 113, 279–289.CrossRefGoogle Scholar
  34. Jun, Y., Bridge, P. D., & Evans, H. C. (1991). An integrated approach to the taxonomy of the genus Verticillium. Journal of General Microbiology, 137, 1437–1444.CrossRefGoogle Scholar
  35. Kamyschko, O. P. (1962). De Monilialibus terrestribus novis notula. Botanicheskie Materialy Otdela Sporovyh Rastenji Botanicheskogo Instituti Imeni V.L. Komarova Akademie Nauk SSSR, 15, 137–141.Google Scholar
  36. Kepler, R. M., Humber, R. A., Bischoff, J. F., et al. (2014). Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia, 106, 811–829.CrossRefPubMedGoogle Scholar
  37. Kepler, R. M., Sung, G.-H., Ban, S., et al. (2012). New teleomorph combinations in the entomopathogenic genus Metacordyceps. Mycologia, 104, 182–197.CrossRefPubMedGoogle Scholar
  38. Kepler, R. M., Ban, S., Nakagiri, A., et al. (2013). The phylogenetic placement of hypocrealean insect pathogens in the genus Polycephalomyces: An application of one fungus one name. Fungal Biology, 117, 611–622.CrossRefPubMedGoogle Scholar
  39. Kerry, B. R. (1980). Biocontrol: Fungal parasites of female cyst nematodes. Journal of Nematology, 12, 253–259.PubMedPubMedCentralGoogle Scholar
  40. Kerry, B. R., Irving, F., & Hornsey, J. C. (1986). Variation between strains of the nematophagous fungus, Verticillium chlamydosporium Goddard. I. Factors Affecting Growth in vitro. Nematologica, 32, 461–473.CrossRefGoogle Scholar
  41. Kirk, P. M., & Ansell, A. E. (1992). Authors of fungal names. Wallingford: CAB International.Google Scholar
  42. Kirk, P. M., Cannon, P. F., Minter, D. W., et al. (2008). Dictionary of the fungi (10th ed.). Wallingford: CAB International.Google Scholar
  43. Larriba, R., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.CrossRefPubMedGoogle Scholar
  44. Lin, R., Liu, C., Shen, B., et al. (2015). Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiology, 15, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lopez-Llorca, L. V., & Boag, B. (1993a). A contribution to the ecology of fungi associated with females and cysts of Heterodera avenae in eastern Scotland. Nematologia Mediterranea, 21, 187–187.Google Scholar
  46. Lopez-Llorca, L. V., & Boag, B. (1993b). Biological properties of a new pigment produced by the nematophagous fungus Verticillium suchlasporium. Nematologia Mediterranea, 21, 143–149.Google Scholar
  47. McNeill, J. (2012). Guidelines for requests for binding decisions on application of the Code. Taxon, 61, 477–478.Google Scholar
  48. Medina-Canales, M. G., Rodríguez-Tovar, A. V., Manzanilla-López, R. H., et al. (2014). Identification and molecular characterization of new Mexican isolates of Pochonia chlamydosporia for the management of Meloidogyne spp. Biocontrol Science and Technology, 24, 1–21.CrossRefGoogle Scholar
  49. Medina-Canales, M. G., Rodríguez-Tovar, A. V., Manzanilla-López, R. H., et al. (2015). Index Fungorum, 239, 1.Google Scholar
  50. Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2005). Colonization of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effect on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.CrossRefGoogle Scholar
  51. Morgan-Jones, G., Godoy, G., & Rodríguez-Kábana, R. (1981). Verticillium chlamydosporium, fungal parasite of Meloidogyne arenaria females. Nematropica, 11, 115–120.Google Scholar
  52. Nonaka, K., Omura, S., Masuma, R., et al. (2013). Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia, 105, 1202–1218.CrossRefPubMedGoogle Scholar
  53. Petch, T. (1939). Notes on entomogenous fungi. Transactions of the British Mycological Society, 23, 127–148.CrossRefGoogle Scholar
  54. Quandt, C. A., Kepler, R. M., Gams, W., et al. (2014). Phylogenetic-based nomenclatural proposal for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus, 5, 121–134.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sasan, R. K., & Bidochka, M. J. (2012). The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 99, 101–107.CrossRefPubMedGoogle Scholar
  56. Seifert, K. A., Morgan-Jones, G., Gams, W., et al. (2011). The genera of Hyphomycetes. Utrecht: CBS-KNAW Fungal Biodiversity Centre.Google Scholar
  57. Sung, G.-H., Spatafora, J. W., Zare, R., et al. (2001). A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia, 72, 29–46.Google Scholar
  58. Sung, G.-H., Hywel-Jones, N. L., Sung, J.-M., et al. (2007a). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, 5–59.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sung, G.-H., Sung, J.-M., Hywel-Jones, N. L., et al. (2007b). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, 44, 1204–1223.CrossRefPubMedGoogle Scholar
  60. Tribe, H. T. (1977). Pathology of cyst nematodes. Biological Reviews, 52, 477–507.CrossRefGoogle Scholar
  61. Van der Weijden, W. J., Leewis, R., & Bol, P. (2007). Biological globalisation. Utrecht: KNNV Publishing.Google Scholar
  62. Zare, R., & Gams, W. (2001). A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia, 73, 1–50.Google Scholar
  63. Zare, R., & Gams, W. (2003a). Pochonia chlamydosporia. IMI Descriptions of Fungi and Bacteria, 1569, 1–4.Google Scholar
  64. Zare, R., & Gams, W. (2003b). Pochonia suchlasporia. IMI Descriptions of Fungi and Bacteria, 1570, 1–2.Google Scholar
  65. Zare, R., & Gams, W. (2004). A monograph of Verticillium section Prostrata. Rostaniha, 3, 1–188.Google Scholar
  66. Zare, R., & Gams, W. (2007). Pochonia globispora sp. nov. Nova Hedwigia, 84, 421–428.CrossRefGoogle Scholar
  67. Zare, R., Gams, W., & Culham, A. (2000). A revision of Verticillium sect. Prostrata. I. Phylogenetic studies using ITS sequences. Nova Hedwigia, 71, 465–480.Google Scholar
  68. Zare, R., Gams, W., & Evans, H. C. (2001). A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 73, 51–86.Google Scholar
  69. Zare, R., Gams, W., Starink-Willemse, M., et al. (2007). Gibellulopsis, a suitable genus for Verticillium nigrescens, and Muscillium, a new genus for V. theobromae. Nova Hedwigia, 85, 463–489.CrossRefGoogle Scholar
  70. Zhang, N., Castlebury, L. A., Miller, A. N., et al. (2006). An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia, 98, 1076–1087.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CAB InternationalEghamUK
  2. 2.Royal Botanic Gardens, KewRichmondUK

Personalised recommendations