Advertisement

Pochonia chlamydosporia Microbial Products to Manage Plant-Parasitic Nematodes: Case Studies from Cuba, Mexico and Brazil

  • Leopoldo Hidalgo-DíazEmail author
  • Francisco Franco-Navarro
  • Leandro Grassi de Freitas
Chapter
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Plant-parasitic nematodes are important pests of many cultivated plants. Vegetable crops account for the greatest proportion of nematicide use because of infection by root-knot nematodes (Meloidogyne spp.). However, the negative impact of most chemical nematicides on the environment has led to a total ban or restricted use of these chemicals. The research discussed in this chapter concerns the development, innovation and good manufacturing practices of selected native isolates of Pochonia chlamydosporia as potential microbial control agents for the management of root-knot and false root-knot nematodes (Nacobbus aberrans sensu lato), as part of research conducted by multidisciplinary groups in Brazil (Federal University of Viçosa), Cuba (CENSA, Mayabeque) and Mexico (Colegio de Posgraduados-Montecillo). The studies referred to in this chapter deal with the basic approach towards implementation of a bio-management strategy for specific agro-economic production systems in Brazil, Cuba and Mexico.

Notes

Acknowledgements

In memoriam of Brian R. Kerry. We would not arrive here without his guidance, his motivation and commitment to the science of microbial control of nematodes, and in particular to Pochonia. His memory keep us motivated to achieve bigger challenges. We also would like to acknowledge colleagues, especially all graduate and undergraduate students, who have accompanied us on this long but fascinating journey.

References

  1. Abd-Elgawad, M. M. M. (2014). Plant-parasitic nematodes threats to global food security. Journal of Nematology, 46, 130–260.Google Scholar
  2. Arévalo, J., Hidalgo-Díaz, L., Martins, et al. (2009). Cultural and morphological characterization of Pochonia chlamydosporia and Lecanicillium psalliotae isolated from Meloidogyne mayaguensis eggs in Brazil. Tropical Plant Pathology, 34, 158–163.CrossRefGoogle Scholar
  3. Atkins, S. D., Hidalgo-Diaz, L., Kalisz, H., et al. (2003). Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Management Science, 59, 183–198.CrossRefPubMedGoogle Scholar
  4. Bontempo, A. F., Fernandes, R. H., Lopes, J., et al. (2014). Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australasian Plant Pathology, 43, 421–424.CrossRefGoogle Scholar
  5. Bourne, J. M., & Kerry, B. R. (1999). Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematodes densities and fungal application rates. Soil Biology and Biochemistry, 31, 75–84.CrossRefGoogle Scholar
  6. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nemathophagous fungus, Verticillium chlamydosporium (Goddard). Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  7. Carneiro, R. M. D. G., Moreira, W. A., Almeida, M. R. A., et al. (2001). Primeiro registro de Meloidogyne mayaguensis em goiabeira no Brasil. Nematologia Brasileira, 25, 223–228.Google Scholar
  8. Ceiro, W. G. (2015). Aportes a las bases cientifico-técnicas para el establecimiento de Pochonia chlamydosporia var. catenulata en el manejo de Meloidogyne spp. en sistemas de producción protegida de hortalizas. Tesis en Opción al Grado de Dr. En Ciencias Agrícolas, Universidad Agraria de la Habana, Mayabeque, Cuba.Google Scholar
  9. Charles, N. J., Arévalo, J., Hernández, A., et al. (2015). Effects of mineral, organic, and biological fertilization on the establishment of Pochonia chlamydosporia var. catenulata (Kamyschko ex. Barron and Onions) Zare & Gams in a protected crop. Revista de Protección Vegetal, 30, 239–244.Google Scholar
  10. Cid del Prado-Vera, I., Lucero Pallares, M. A., Pérez-Rodríguez, I., et al. (2010). Biofumigation a very efficient alternative for the control of root-knot nematode Meloidogyne spp. in vegetables produced in house shadows. Nematropica, 40, 128. [Abstract].Google Scholar
  11. Dallemole-Giaretta, R., Freitas, L. G., Lopes, E. A., et al. (2012). Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agentes of Meloidogyne javanica. Crop Protection, 42, 102–107.CrossRefGoogle Scholar
  12. Dallemole-Giaretta, R., Freitas, L. G., Xavier, D. M., et al. (2014). Soil amendment with substrate containing mycelium and conidia of Pochonia chlamydosporia for the management of Meloidogyne javanica. Ciência Rural, 44, 629–633.CrossRefGoogle Scholar
  13. Dallemole-Giaretta, R., Freitas, L. G., & Lopes, E. A., et al. (2015). Pochonia chlamydosporia promotes the growth of tomato and lettuce plants. Acta Scientiarum. Agronomy. no.4 Maringá Oct./Dec. 2015.  https://doi.org/10.4025/actasciagron.v37i4.25042 . Accessed 3 Oct 2016.
  14. De Leij, F. A. A. M., & Kerry, B. R. (1991). The nematophagous fungus Verticillum chlamydosporium Goddard, as a potencial biological control agent for Meloidogyne arenaria (Neal) Chitwood. Revue de Nématologie, 14, 157–164.Google Scholar
  15. De Leij, F. A. A. M., Dennehy, J. A., & Kerry, B. R. (1993). Effect of catering on the distribution of Verticillium chlamydosporium in soil and the colonization of egg masses of Meloidogyne incognita by the fungus. Nematologica, 39, 250–265.CrossRefGoogle Scholar
  16. Dias-Arieira, C. R., Santana, S. M., Freitas, L. G., et al. (2011). Efficiency of Pochonia chlamydosporia in Meloidogyne incognita control in lettuce crop (Lactuca sativa L.) Journal of Food, Agriculture and Environment, 9, 561–563.Google Scholar
  17. EPA. (1996). Prevention, pesticides and toxic substances. Series 885-Microbial Pesticide Test Guidelines.Google Scholar
  18. Fernández, E., Pérez, M., Gandarilla, H., et al. (1998). Guía para disminuir infestaciones de Meloidogyne spp. mediante el empleo de cultivos no susceptibles. Boletín Técnico. Sanidad Vegetal, 4, 1–18.Google Scholar
  19. Flores-Camacho, R., Manzanilla-López, R. H., Cid del Prado-Vera, I., et al. (2007). Control of Nacobbus aberrans (Thorne, 1935) Thorne and Allen, 1944 with Pochonia chlamydosporia (= Verticillium chlamydosporium) (Goddard) Zare and W. Gams. Revista Mexicana de Fitopatología, 25, 26–34.Google Scholar
  20. Flores-Camacho, R., Atkins, S. D., Manzanilla-López, R. H., et al. (2008). Characterization of Mexican isolates of Pochonia chlamydosporia var. chlamydosporia (Goddard) Gams and Zare for biological control of Nacobbus aberrans (Thorne) Thorne and Allen. Revista Mexicana de Fitopatología, 26, 93–104.Google Scholar
  21. Franco-Navarro, F., Pérez-Rodríguez, I., & Acosta-Hernández, R. (2007). Control microbiológico del nematodo falso nodulador, Nacobbus aberrans, en condiciones de campo. In: Pérez, V. A, & Ávila, R. C. (Eds.) Memoria de Resúmenes del IX Simposio Internacional y IV Congreso Nacional de Agricultura Sostenible, México, p 262.Google Scholar
  22. Franco-Navarro, F., Pérez-Rodríguez, I., & Doroteo-Mendoza, et al. (2008). Estado del conocimiento de Pochonia chlamydosporia en México. In: Stefanova, M., Martínez, B., & Hidalgo, L. (Eds.) Memoria de Resúmenes del VI Seminario Científico Internacional de Sanidad Vegetal / II Taller Latinoamericano de Biocontrol de Fitopatógenos, pp 183–184.Google Scholar
  23. Franco-Navarro, F., Vilchis-Martínez, K., & Miranda-Damián, J. (2009). New records of Pochonia chlamydosporia from Mexico: Isolation, root colonization and parasitism of Nacobbus aberrans. Nematropica, 39, 133–142.Google Scholar
  24. Franco-Navarro, F., Cid del Prado-Vera, I., & Romero-Tejeda, M. L. (2013). Aislamiento y Potencial Parasítico de un aislamiento nativo de Pochonia chlamydosporia en contra de Nacobbus aberrans en Frijol. Revista Mexicana de Fitopatología, 30, 101–114.Google Scholar
  25. Freitas, L. G., Giaretta-Dallemole, R., Ferraz, S., et al. (2009). Controle Biológico de Nematóides: Estudo de Casos. In L. Zambolim & M. Picanço (Eds.), Controle Biológico de Pragas e Doenças – Exemplos Práticos (Vol. 1, pp. 41–82). São Carlos: Suprema Gráfica e Editora Ltda.Google Scholar
  26. García, L. (2005). Evaluación toxicológica y ecotoxicológica de un bionematicida constituido por la cepa IMI SD 187 de Pochonia chlamydosporia var. catenulata. Tesis en Opción al Grado de Doctor en Medicina Veterinaria. Universidad Agraria de la Habana, Mayabeque, Cuba.Google Scholar
  27. García, L., Bulnes, C., Melchor, G., et al. (2004a). Safety of Pochonia chlamydosporia var. catenulata in acute oral and dermal toxicity/pathogenicity evaluations in rats and rabbits. Veterinary and Human Toxicology, 46, 248–250.PubMedGoogle Scholar
  28. García, L., Melchor, G., Montes de Oca, N., et al. (2004b). Estudio de la irritación ocular y dérmica de Pochonia chlamydosporia var. catenulata. Revista de Toxicología Española, 21, 103–107.Google Scholar
  29. García, L., Melchor, G., Arévalo, J., et al. (2008a). Evaluación de la fitotoxicidad de la cepa IMI SD 187 de Pochonia chlamydosporia var. catenulata sobre Zea mays L. y Phaseolus vulgaris L. Revista de Protección Vegetal, 23, 38–42.Google Scholar
  30. García, L., Melchor, G., & Domínguez, Y., et al. (2008b). Ecotoxicological evaluation of Pochonia chlamydosporia var. catenulata in terrestrial invertebrates. RETEL Revista de Toxicología en Línea. No. 14. www.sertox.com.ar/modules.php. Accessed 11 Apr 2008.Google Scholar
  31. Goettel, M. S., Hajek, A. E., Siegel, J. P., et al. (2001). Safety of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents. Progress, problems and potential (pp. 347–375). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  32. Gracia, L., Bules, C., Melchor, G., et al. (2009). Safety of Pochonia chlamydosporia var. catenulata inquails. Revista de Salud Animal, 31, 40–45.Google Scholar
  33. Haydock, P. P. J., Woods, S. R., Grove, I. G., et al. (2006). Chemical control of nematode. In R. Perry & M. Moens (Eds.), Plant nematology (pp. 392–408). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  34. Hernández, M. A., & Hidalgo-Díaz, L. (2008). KlamiC: Bionematicida agrícola producido a partir del hongo Pochonia chlamydosporia var. catenulata. Revista de Protección Vegetal, 23, 131–134.Google Scholar
  35. Hernández, M. A., Arévalo, J., & Marrero, D., et al. (2016). Effect of KlamiC® on growth stimulation of plantain and banana vitro plants. Cultivos Tropicales 37, 168–172. doi: 10.13140/RG.2.2.25696.69120. Accessed 3 Oct 2016.Google Scholar
  36. Hidalgo-Díaz, L. (2000). Potencialidades de cepas autóctonas de Verticillium chlamydosporium (Goddard) como agente de control biológico de Meloidogyne spp. Tesis en Opción al Grado de Doctor en Ciencias Agrícolas. Universidad Central de las Villas, Las Villas, Cuba.Google Scholar
  37. Hidalgo-Díaz, L. (2013). Investigación, desarrollo e innovación de Pochonia chlamydosporia var. catenulata: Agente de control microbiano de nematodos formadores de agallas. Tesis en opción al grado de Doctor en Ciencias. Universidad Agraria de la Habana, Mayabeque, Cuba.Google Scholar
  38. Hidalgo-Díaz, L., & Kerry, B. R. (2008). Integration of biological control with other methods of nematode management. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grain crops nematode (pp. 29–49). Dordrecht: Springer.Google Scholar
  39. Hidalgo-Díaz, L., Bourne, J. M., Kerry, B. R., et al. (2000). Nematophagous Verticillium spp. in soils infested with Meloidogyne spp. in Cuba: Isolation and screening. International Journal of Pest Management, 46, 277–284.CrossRefGoogle Scholar
  40. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.CrossRefPubMedGoogle Scholar
  41. Kerry, B. R., & Bourne, J. M. (Eds.). (2002). A manual for research on Verticillium chlamydosporium, a potential biological control agent for rootknot nematodes. Gent: IOBC/WPRS.Google Scholar
  42. Kerry, B. R., & Hirsch, P. R. (2011). Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. In K. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms (pp. 171–182). Dordrecht: Springer.CrossRefGoogle Scholar
  43. Kerry, B. R., Crump, D. H., & Mullen, L. A. (1982). Studies of the cereal cyst nematodes, Heterodera avenae, under continuous cereal, 1975-1978. II. Fungal parasitism of nematodes females and eggs. The Annals of Applied Biology, 100, 489–499.CrossRefGoogle Scholar
  44. Kirk, P. M., & Ansell, A. E. (1992). Authors of fungal names. Wallingford: CAB International.Google Scholar
  45. Lamovsek, J., Urek, G., & Trdan, S. (2013). Biological control of rootknot nematodes (Meloidogyne spp.): Microbes against pests. Acta Agriculture Slovenia, 101-2, 263–275.Google Scholar
  46. Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2002). Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Applied and Environmental Microbiology, 68, 1846–1583.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Medina-Canales, M. G., Rodríguez-Tovar, A. V., Manzanilla-López, R. H., et al. (2013). Identification and molecular characterisation of new Mexican isolates of Pochonia chlamydosporia for the management of Meloidogyne spp. Biocontrol Science and Technology, 24, 1–21.CrossRefGoogle Scholar
  48. Montes de Oca, N., Arévalo, J., Acosta, N., et al. (2005). Estabilidad de la cepa IMI SD 187 de Pochonia chlamydosporia var. catenulata (Kamyscho ex Barron y Onions) Zare y W. Gams. Parte I. Indicadores morfológicos, productivos y patogénicos. Revista de Protección Vegetal, 20, 93–101.Google Scholar
  49. Montes de Oca, N., Arévalo, J., Núñez, A., et al. (2009). KlamiC: ExperienciaTécnica-Productiva. Revista de Protección Vegetal, 24, 62–65.Google Scholar
  50. Montesinos, E. (2003). Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology, 6, 245–252.CrossRefPubMedGoogle Scholar
  51. Moosavi, M. R., & Zare, R. (2015). Factor affecting commercial success of biological agents of phytonematodes. In T. H. Askary & P. R. P. Martinelli (Eds.), Biological control of phytonematodes (pp. 423–445). Wallingford: CAB International.Google Scholar
  52. Nasum, E. G. C. (2013). Tratamento de sementes de soja e algodão com Pochonia chlamydosporia no controle de Meloidogyne incognita e histopatologia da interação tritrófica. Doctoral Thesis, Universidade Federal de Viçosa, MG, Brazil.Google Scholar
  53. OECD. (1996). Environment Monograph No. 106. Data requirements for registration of biopesticides in OECD member countries: Survey results. Paris: Organisation for Economic Co-operation and Development.Google Scholar
  54. Official Gazette. (2007). Gaceta Oficial de la República de Cuba, Ministerio de Justicia: Resolución Conjunta del MINSAP y MINAGRI. No 16:77–84 (16 de abril del 2007).Google Scholar
  55. Pérez-Rodríguez, I. (2004). Eficiencia de cinco aislamientos del hongo nematófago Pochonia chlamydosporia Goddard para el control de Nacobbus aberrans Thorne, 1935) Thorne and Allen 1944, en tomate (Lycopersicon esculentum Mill). MSci Dissertation, ITA 29. Tlaxcala, México.Google Scholar
  56. Pérez-Rodríguez, I., Doroteo-Mendoza, A., Franco-Navarro, F., et al. (2007). Isolates of Pochonia chlamydosporia var. chlamydosporia from Mexico as potencial biological control agents of Nacobbus aberrans. Nematropica, 37, 127–134.Google Scholar
  57. Pérez-Rodríguez, I., Franco-Navarro, F., Cid del Prado-Vera, I., et al. (2011). Control de Nacobbus aberrans en chile ancho (Capsicum annuum L.) mediante el uso combinado de enmiendas orgánicas, hongos nematófagos y nematicidas. Nematropica, 41, 122–129.Google Scholar
  58. Peteira, B., Puertas, A., Hidalgo-Díaz, L., et al. (2005). Real-time PCR to monitor and assess the efficacy of the nematophagous fungus Pochonia chlamydosporia var. catenulata against root-knot nematode populations in the field. Biotecnologia Aplicada, 22, 261–266.Google Scholar
  59. Podestá, G. S., Freitas, L. G., Dallemole-Giaretta, R., et al. (2013). Meloidogyne javanica control by Pochonia chlamydosporia, Gracilibacillus dipsosauri and soil conditioner in tomato. Summa Phytopathologica, 39, 122–125.CrossRefGoogle Scholar
  60. Puertas, A. (2007). Uso de Pochonia chlamydosporia var. catenulata (Kamyscho ex Barron y Onions) Zare y Gams como agente de control biológico de Meloidogyne incognita (Kofoid y White) Chitwood en cultivos hortícolas. Tesis en opción al grado científico de Doctor en Ciencias Agrícolas. Universidad Agraria de la Habana, Mayabeque, Cuba.Google Scholar
  61. Puertas, A., & Hidalgo-Díaz, L. (2007). Influencia de la planta hospedante y su interacción con Meloidogyne incognita sobre la efectividad de Pochonia chlamydosporia var. catenulata. Revista de Protección Vegetal, 22, 104–109.Google Scholar
  62. Puertas, A., & Hidalgo-Díaz, L. (2009). Efecto de diferentes abonos orgánicos sobre el establecimiento de Pochonia chlamydosporia var. catenulata en el sustrato y la rizosfera de plantas de tomate. Revista de Protección Vegetal, 24, 162–165.Google Scholar
  63. Puertas, A., Arévalo, J., Montes de Oca, N., et al. (2006a). Efecto de diferentes concentraciones de inóculo de la cepa IMI SD 187 de Pochonia chlamydosporia var. catenulata en el control de Meloidogyne incognita. Revista de Protección Vegetal, 21, 74–79.Google Scholar
  64. Puertas, A., Noval de la, B. M., Martínez, B., et al. (2006b). Interacción de Pochonia chlamydosporia var. catenulata con Rhizobium sp., Trichoderma harzianum y Glomus clarum en el control de Meloidogyne incognita. Revista de Protección Vegetal, 21, 80–89.Google Scholar
  65. Ravensberg, W. J. (2011). A Roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Dordrecht: Springer.CrossRefGoogle Scholar
  66. Rodríguez, M. G., Rodríguez, I., & Sánchez, L. (1995). Especies del género Meloidogyne que parasitan el cafeto en Cuba: Distribución geográfica y sintomatología. Revista de Protección Vegetal, 10, 123–128.Google Scholar
  67. Rodríguez-Kábana, R. (1997). Alternatives to MeBr soil fumigation. In A. Bello, J. A. González, M. Arias, & R. Rodríguez-Kábana (Eds.), Alternatives to methyl bromide for the Southern European Countries (pp. 17–33). Valencia: CSIC, Gráficas Papallona S.C.V.Google Scholar
  68. Sellitto, V. M., Curto, G., & DallaValle, E. et al. (2016). Effect of Pochonia chlamydosporia-based formulations and the regulation of root-knot nematodes and plant growth response. Frontiers in Life Sciences. http://www.dx.doi.org/10.1080/21553769.2016.11193827. Accessed 20 Oct 2016.
  69. Stirling, G. R. (2011). Biological control of plant-parasitic nematodes: An ecological perspective, a review of progress and opportunities for further research. In K. G. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms, Progress in Biological Control 11 (pp. 1–38). Dordrecht: Springer.Google Scholar
  70. Torres-López, J., Prado-Vera, C. d., Rosas-Alatorre, R., et al. (2013). Soil biodisinfection and use of Pochonia chlamydosporia in management of Meloidogyne arenaria on guava. Nematropica, 43, 327. [Abstract].Google Scholar
  71. Viggiano, J. R., Freitas, L. G., & Lopes, E. A. (2014). Use of Pochonia chlamydosporia to control Meloidogyne javanica in cucumber. Biological Control, 69, 72–77.CrossRefGoogle Scholar
  72. Viggiano, J. R., Freitas, L. G., & Lopes, E. A. (2015). Pochonia chlamydosporia var. chlamydosporia (Goddard) Zare & W. Gams for the management of lettuce infected with Meloidogyne javanica (Treub, 1885). Chilean Journal of Agricultural Research, 75, 255–258.CrossRefGoogle Scholar
  73. Villoch, A., Montes de Oca, N., & Hidalgo-Díaz, L. (2003). Elaboración de una guía de buenas prácticas para la producción de biocontroles. Revista de Protección Vegetal, 18, 92–97.Google Scholar
  74. Waage, J. K., & Greathead, D. J. (1988). Biological control: Challenges and opportunities. Philosophical Transactions. Royal Society of London, 318, 111–128.CrossRefGoogle Scholar
  75. Wesemael, W. M. L., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leopoldo Hidalgo-Díaz
    • 1
    Email author
  • Francisco Franco-Navarro
    • 2
  • Leandro Grassi de Freitas
    • 3
  1. 1.Dirección de Sanidad Vegetal, Centro Nacional de Sanidad AgropecuariaSan José de las LajasCuba
  2. 2.Programa de Fitopatología, Colegio de Posgraduados-Campus MontecilloTexcocoMexico
  3. 3.Departamento de FitopatologíaUniversidade Federal de ViçosaMinas GeraisBrazil

Personalised recommendations