Advertisement

Priming Plant Defence Responses Can Enhance the Biological Control of Pochonia chlamydosporia Against Root-Knot Nematodes

  • Maria Clara Vieira dos SantosEmail author
  • Isabel Abrantes
  • Rosane H. C. Curtis
Chapter
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Improved crop protection strategies are required to address the need for efficient use of resources and ensure food security. The soil-dwelling plant-parasitic nematodes are a major pest causing crop disease and yield loss. Root-knot nematodes, Meloidogyne spp., are among the most economically damaging soil dwelling plant parasites of agricultural crops. Current management practices are not economically or environmentally attractive and often rely on toxic nematicide applications. Therefore, research on sustainable strategies for nematode control is a priority. Successful management strategies could potentially be achieved by the combined use of natural enemies of nematodes, such as the biological control agent Pochonia chlamydosporia, a facultative egg parasite of plant-parasitic nematodes, and induction of natural defence mechanisms in plants. The fungus can saprophytically proliferate in the rhizosphere using nutrients present in root exudates and infect nematode eggs but is not able to prevent the initial infection of roots by nematode infective juveniles which can itself be achieved by priming plant immune defences. The application of P. chlamydosporia, combined with the exploitation of the natural mechanisms of plant defence, is a biomanagement alternative under study. The activation of specific plant biochemical defence pathways might produce changes that promote the fungal transition from the saprophytic to the parasitic phase. The main goal of this chapter is to unravel the role of induced plant defence responses as a putative resource to enhance the potential of P. chlamydosporia as a biocontrol agent against root-knot nematodes.

References

  1. Afroz, A., Ali, G. M., Mir, A., et al. (2011). Application of proteomics to investigate stress-induced proteins for improvement in crop protection. Plant Cell Reports, 30, 745–763.CrossRefPubMedGoogle Scholar
  2. Atkins, S. D., Hidalgo-Diaz, L., Kalisz, H., et al. (2003). Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Management Science, 59, 183–189.CrossRefPubMedGoogle Scholar
  3. Berry, S. D., Rutherford, R. S., & Curtis, R. H. (2011). Preliminary investigations into inducing resistance in sugarcane against Meloidogyne incognita. South African Journal of Plant and Soil, 28, 272.CrossRefGoogle Scholar
  4. Bordallo, J. J., Lopez-Llorca, L. V., Jansson, H.-B., et al. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. The New Phytologist, 154, 491–499.CrossRefGoogle Scholar
  5. Bourne, J. M., & Kerry, B. R. (1999). Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biology and Biochemistry, 31, 75–84.CrossRefGoogle Scholar
  6. Bourne, J. M., & Kerry, B. R. (2000). Observations on the survival and competitive ability of the nematophagous fungus Verticillium chlamydosporium in soil. International Journal of Nematology, 10, 9–18.Google Scholar
  7. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1994). Methods for the study of Verticillium chlamydosporium in the rhizosphere. Supplement Journal of Nematology, 26, 587–591.Google Scholar
  8. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  9. Chinnasri, B., Sipes, B. S., & Schmitt, D. P. (2006). Effects of inducers of systemic acquired resistance on reproduction of Meloidogyne javanica and Rotylenchulus reniformis in pineapple. Journal of Nematology, 38, 319–325.PubMedPubMedCentralGoogle Scholar
  10. Chitwood, D. J. (2003). Nematicides. In J. R. Plimmer (Ed.), Encyclopedia of agrochemicals (pp. 1104–1115). New York: Wiley.Google Scholar
  11. Cohen, Y. R. (2002). β-aminobutyric acid-induced resistance against plant pathogens. Plant Disease, 86, 448–457.CrossRefGoogle Scholar
  12. Collins, H. P., Navare, D. A., Riga, E., et al. (2006). Effect of foliar applied plant elicitors on microbial and nematode populations in the root zone of potato. Communications in Soil Science and Plant Analysis, 37, 1747–1759.CrossRefGoogle Scholar
  13. Conrath, U., Thulke, O., Katz, V., et al. (2001). Priming as a mechanism in induced systemic resistance in plants. European Journal of Plant Pathology, 107, 113–119.CrossRefGoogle Scholar
  14. Cooper, W. R., Jia, L., & Goggin, L. (2005). Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. Journal of Chemical Ecology, 31, 1953–1967.CrossRefPubMedGoogle Scholar
  15. Curtis, R. H., Birkett, M., & Pye, B., et al. (2009). Aspects of the plant-nematode interactions: Host recognition and plant signalling molecules. In: Abstracts of the 2nd international congress of nematology (40th ONTA and 28th SBN Meetings), 4–9 October 2009, Maceió, Brasil.Google Scholar
  16. Dallemole-Giaretta, R., Freitas, L. G., Lopes, E. A., et al. (2015). Pochonia chlamydosporia promotes the growth of tomato and lettuce plants. Acta Scientiarum Agronomy, 37, 417–423.CrossRefGoogle Scholar
  17. De Leij, F. A. A. M., & Kerry, B. R. (1991). The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Revue de Nématologie, 14, 157–164.Google Scholar
  18. De Leij, F. A. A. M., Kerry, B. R., & Dennehy, J. A. (1993). Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and M. hapla in pot and micro-plot tests. Nematologica, 38, 115–126.CrossRefGoogle Scholar
  19. De Meutter, J., Tytgat, T., Witters, E., et al. (2003). Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Molecular Plant Pathology, 4, 271–277.CrossRefPubMedGoogle Scholar
  20. Dias-Arieira, C. R., Santana S de, M., Freitas, L. G., et al. (2011). Efficiency of Pochonia chlamydosporia in Meloidogyne incognita control in lettuce crop (Lactuca sativa L.) Journal of Food, Agriculture and Environment, 9, 561–563.Google Scholar
  21. Eisenback, J. D., & Triantaphyllou, H.H. (1991). Root-knot nematodes: Meloidogyne species and races. In W. R. Nickle (Ed.), Manual of agricultural nematology (pp. 191–274). New York: Marcel Dekker.Google Scholar
  22. Escudero, N., & Lopez-Llorca, L. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.CrossRefGoogle Scholar
  23. Fujimoto, T., Tomitaka, Y., Abe, S., et al. (2011). Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl-jasmonate. Journal of Plant Physiology, 168, 1084–1097.CrossRefPubMedGoogle Scholar
  24. Giné, A., Carrasquilla, M., Martínez-Alonso, M., et al. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science, 7, 164. doi: 10.3389/fpls.2016.00164.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gorlach, J., Volrath, S., Knauf-Beiter, G., et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8, 629–643.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gozzo, F. (2003). Systemic acquired resistance in crop protection: From nature to a chemical approach. Journal of Agricultural and Food Chemistry, 51, 4487–4503.CrossRefPubMedGoogle Scholar
  27. Heil, M., & Baldwin, I. T. (2002). Fitness costs of induced resistance: Emerging experimental support for a slippery concept. Trends in Plant Science, 7, 61–67.CrossRefPubMedGoogle Scholar
  28. Heil, M., & Bostock, R. M. (2002). Induced Systemic Resistance (IRS) against pathogens in the context of induced plant defences. Annals of Botany, 89, 503–512.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hérnandez, M. A., & Hidalgo-Díaz, L. (2008). KlamiC®: Bionematicida agrícola producido a partir del hongo Pochonia chlamydosporia var. catenulata. Revista de Protección Vegetal, 23, 131–134.Google Scholar
  30. Iberkleid, I., Vieira, P., de Almeida Engler, J., et al. (2013). Fatty acid- and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-not nematodes. PloS One, 8(5), e64586. doi: 10.1371/journal.pone.0064586.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jakab, G., Cottier, V., Toquin, V., et al. (2001). β-aminobutyric acid-induced resistance in plants. European Journal of Plant Pathology, 107, 29–37.CrossRefGoogle Scholar
  32. Jones, J. T., Haegeman, A., Danchin, E. G. J., et al. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.CrossRefPubMedGoogle Scholar
  33. Karssen, G., & Moens, M. (2006). Root-knot nematodes. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 59–90). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  34. Kerry, B. R. (1982). The decline of Heterodera avenae populations. EPPO Bulletin, 12, 491–496.CrossRefGoogle Scholar
  35. Kerry, B. R. (1987). Biological control. In R. H. Brown & B. R. Kerry (Eds.), Principles and practise of nematode control in crops (pp. 233–257). Sidney: Academic.Google Scholar
  36. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.CrossRefPubMedGoogle Scholar
  37. Kerry, B. R., & Bourne, J. M. (1996). The importance of rhizosphere interactions in the biological control of plant parasitic nematodes - A case study using Verticillium chlamydosporium. Pesticide Science, 47, 69–75.CrossRefGoogle Scholar
  38. Kerry, B. R., & Bourne, J. (Eds.). (2002). A manual for research on Verticillium chlamydosporium, a potential biological control agent for root-knot nematodes. International Organization for Biological and Integrated Control of Noxious Animals and Plants/West Palearctic Regional Section (IOBC/WPRS), Gent.Google Scholar
  39. Kerry, B. R., & Hirsch, P. R. (2011). Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. In K. G. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanism (pp. 171–182). London: Springer.CrossRefGoogle Scholar
  40. Kerry, B. R., & Hominick, W. M. (2002). Biological control. In D. L. Lee (Ed.), The biology of nematodes (pp. 483–509). London: Taylor and Francis.CrossRefGoogle Scholar
  41. Kerry, B. R., Crump, D. H., & Mullen, L. A. (1982). Studies of the cereal cyst-nematode, Heterodera avenae under continuous cereals, 1975-1978. II. Fungal parasitism of nematode female and eggs. The Annals of Applied Biology, 100, 489–499.CrossRefGoogle Scholar
  42. Kerry, B. R., Kirkwood, I. A., De Leij, F. A. A. M., et al. (1993). Growth and survival of Verticillium chlamydosporium Goddard, a parasite of nematodes, in soil. Biocontrol Science and Technology, 3, 355–365.CrossRefGoogle Scholar
  43. Kuć, J. (2001). Concepts and direction of induced systemic resistance in plants and its application. European Journal of Plant Pathology, 107, 7–12.Google Scholar
  44. Larriba, E., Jaime, M. D., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.CrossRefPubMedGoogle Scholar
  45. Larriba, E., Jaime, M. D., Nislow, C., et al. (2015). Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. Journal of Plant Research, 128, 665–678.CrossRefPubMedGoogle Scholar
  46. Lopez-Llorca, L. V., Bordallo, J. J., Salinas, J., et al. (2002). Use of light and scanning electron microscopy to examine colonization of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron, 33, 61–67.CrossRefPubMedGoogle Scholar
  47. Lucas, J. (2010). Advances in plant disease and pest management. The Journal of Agricultural Science, 149, 91–114.CrossRefGoogle Scholar
  48. Mácia-Vicente, J. G., Jansson, H.-B., Talbot, N. J., et al. (2009a). Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. The New Phytologist, 182, 213–228.CrossRefPubMedGoogle Scholar
  49. Mácia-Vicente, J. G., Rosso, L. C., Ciancio, A., et al. (2009b). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. The Annals of Applied Biology, 155, 391–401.CrossRefGoogle Scholar
  50. Magan, N. (2001). Physiological approaches to improving the ecological fitness of fungal biocontrol agents in fungi as biocontrol agents. In T. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents – Progress, problems and potential (pp. 239–251). Wallingford: CABI.CrossRefGoogle Scholar
  51. Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2004). The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycological Research, 108, 161–169.CrossRefPubMedGoogle Scholar
  52. Maule, A., & Curtis, R. (2011). Exploiting genomics and molecular biology to understand plant-nematode interaction. In J. Jones, L. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 221–251). London: Springer.CrossRefGoogle Scholar
  53. Medeiros, H. A., Resende, R. S., Ferreira, F. C., et al. (2015). Induction of resistance in tomato against Meloidogyne javanica by Pochonia chlamydosporia. Nematoda, 2, e10015. http://www.dx.doi.org/10.4322/nematoda.10015.Google Scholar
  54. Molinari, S. (2011). Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides. Plant Cell Reports, 30, 311–323.CrossRefPubMedGoogle Scholar
  55. Molinari, S. (2016). Systemic acquired resistance activation in solanaceous crops as a management strategy against root-knot nematodes. Pest Management Science, 72, 888–896.CrossRefPubMedGoogle Scholar
  56. Molinari, S., & Baser, N. (2010). Induction of resistance to root-knot nematodes by SAR elicitors in tomato. Crop Protection, 29, 1354–1362.CrossRefGoogle Scholar
  57. Monfort, E., Lopez-Llorca, L. V., Jansson, H.-B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.CrossRefGoogle Scholar
  58. Nandi, B., Kundu, K., Banerjee, N., et al. (2003). Salicylic acid-induced suppression of Meloidogyne incognita infestation of okra and cowpea. Nematology, 5, 747–752.CrossRefGoogle Scholar
  59. Nicol, J. M., Turner, S. J., Coyne, D. L., et al. (2011). Current nematode threats to world agriculture. In J. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). London: Springer.CrossRefGoogle Scholar
  60. Oka, Y., & Cohen, Y. (2001). Induced resistance to cyst and root-knot nematodes in cereals by DL-β-amino-n-butyric acid. European Journal of Plant Pathology, 107, 219–227.CrossRefGoogle Scholar
  61. Oka, Y., Cohen, Y., & Spiegel, Y. (1999). Local and systemic induced resistance to the root-knot nematode in tomato by DL-β-amino-n-butyric acid. Phytopathology, 89, 1138–1143.CrossRefPubMedGoogle Scholar
  62. Owen, K. J., Green, C. D., & Deverall, B. J. (2002). A benzothiadiazole applied to foliage reduces development and egg deposition by Meloidogyne spp. in glasshouse-grown grapevine roots. Australasian Plant Pathology, 31, 47–53.CrossRefGoogle Scholar
  63. Pankaj, N. M., Powers, S. J., Gaur, H.-S., et al. (2013). Differential defence response due to jasmonate seed treatment in cowpea and tomato against root-knot and potato cyst nematodes. Nematology, 15, 15–21.CrossRefGoogle Scholar
  64. Pieterse, C. M. J., Ton, J., & Van Loon, L. C. (2001). Cross-talk between plant defence signalling pathways: Boost or burden? AgBiotechNet, 3, 1–6.Google Scholar
  65. Siddique, S., Radkovic, Z. S., De La Torre, C. M., et al. (2015). A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proceedings of the National Academy of Sciences, 112, 12669–12674.CrossRefGoogle Scholar
  66. Stirling, G. R. (2011). Biological control of plant-parasitic nematodes: An ecological perspective, a review of progress and opportunities for further research. In K. G. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms (pp. 1–38). London: Springer.Google Scholar
  67. Trudgill, D. L., & Blok, V. C. (2001). Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology, 39, 53–77.CrossRefPubMedGoogle Scholar
  68. Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.CrossRefGoogle Scholar
  69. Viaene, N., Coyle, D. L., & Kerry, B. R. (2006). Biological and cultural management. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 346–369). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  70. Vieira dos Santos, M. C., Curtis, R., & Abrantes, I. (2013a). Effect of plant elicitors on the reproduction of the root-knot nematode Meloidogyne chitwoodi on susceptible hosts. European Journal of Plant Pathology, 136, 193–202.CrossRefGoogle Scholar
  71. Vieira dos Santos, M. C., Curtis, R., & Abrantes, I. (2013b). The combined use of Pochonia chlamydosporia with plant defence activators – A potential sustainable control strategy for Meloidogyne chitwoodi. Phytopathologia Mediterranea, 53, 66–74.Google Scholar
  72. Vieira dos Santos, M. C., Esteves, I., Kerry, B., et al. (2014). Interactions between Pochonia chlamydosporia and Meloidogyne chitwoodi in a crop rotation scheme. Nematropica, 44, 37–46.Google Scholar
  73. Ward, E., Kerry, B. R., Manzanilla-López, R. H., et al. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subjected to regulation by carbon, nitrogen and pH: implications for nematode biocontrol. PloS One, 7(4), e35637. doi: 10.1371/journal.pone.0035657.CrossRefGoogle Scholar
  74. Zavala-Gonzalez, E. A., Rodríguez-Cazorla, E., Escudero, N., et al. (2017). Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signalling and leads to accelerated flowering and improved yield. The New Phytologist, 213, 351–364. doi: 10.1111/nph.14106.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maria Clara Vieira dos Santos
    • 1
    Email author
  • Isabel Abrantes
    • 1
  • Rosane H. C. Curtis
    • 2
  1. 1.Centre for Functional Ecology (CFE)University of CoimbraCoimbraPortugal
  2. 2.Bionemax UK Ltd, Rothamsted Centre for Research and EnterpriseHarpenden, HertsUK

Personalised recommendations