Advertisement

Molecular Diagnostics of Pochonia chlamydosporia

  • María Gabriela Medina-CanalesEmail author
  • Aída V. Rodríguez-Tovar
Chapter
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Molecular tools have been increasingly used in identification and taxonomy studies of Pochonia (Clavicipitaceae). In recent years there have been important advances in Clavicipitaceae taxonomy, including resolving the differences between Verticillium and Pochonia through ITS sequences molecular analysis. Current molecular identification of Pochonia spp. relies on different sets of molecular markers to differentiate species, varieties, and host-preference biotypes. The diversity of Pochonia spp. populations has been studied through several genomic fingerprinting techniques, such as RAPD, SCAR, ERIC and REP. Quantification of the fungus in soil and roots can be made using quantitative PCR in combination with other classic microbiological techniques. It is well known that the genus is complex and the current classification is mainly based on the phylogenetic analysis of several genes such as β-tubulin, ITS, nrSSU, nrLSU, rpb1, rpb2 and EF1-α. Molecular advances and recent genome sequencing of Pochonia chlamydosporia has opened a new era in the study of this important fungus, thus broadening the possibilities for studying the molecular mechanisms of differentiation, pathogenesis and diagnostics within Pochonia spp.

References

  1. Anderson, I. C., & Cairney, J. W. G. (2004). Diversity and ecology of soil fungal communities: Increased understanding through the application of molecular techniques. Environmental Microbiology, 6, 769–779.CrossRefPubMedGoogle Scholar
  2. Arnedo-Andrés, M., Gil-Ortega, R., Luis-Arteaga, M., et al. (2002). Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.) Theoretical and Applied Genetics, 105, 1067–1074.CrossRefPubMedGoogle Scholar
  3. Arora, D. K., Hirsch, P. R., & Kerry, B. R. (1996). PCR-based molecular discrimination of Verticillium chlamydosporium isolates. Mycological Research, 100, 801–809.CrossRefGoogle Scholar
  4. Atkins, S. D., Hidalgo-Díaz, L., Clark, I. M., et al. (2003). Approaches for monitoring the release of Pochonia chlamydosporia var. catenulata, a biocontrol agent of root-knot nematodes. Mycological Research, 107, 206–212.Google Scholar
  5. Atkins, S. D., Peteira, B., Clark, I. M., et al. (2009). Use of real-time quantitative PCR to investigate root and gall colonisation by co-inoculated isolates of the nematophagous fungus Pochonia chlamydosporia. The Annals of Applied Biology, 155, 143–152.CrossRefGoogle Scholar
  6. Bidochka, M. J., Kamp, A. M., Lavender, T. M., et al. (2001). Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: Uncovering cryptic species? Applied and Environmental Microbiology, 67, 1335–1342.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bird, A. F., & McClure, M. A. (1976). The tylenchid (Nematoda) egg shell: Structure, composition and permeability. Parasitology, 72, 19–28.CrossRefGoogle Scholar
  8. Bischoff, J. F., Rehner, S. A., & Humber, R. A. (2006). Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia, 98, 737–745.CrossRefPubMedGoogle Scholar
  9. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  10. Bridge, P., & Spooner, B. (2001). Soil fungi: Diversity and detection. Plant and Soil, 232, 147–154.CrossRefGoogle Scholar
  11. Ciancio, A., Loffredo, A., Paradies, F., et al. (2005). Detection of Meloidogyne incognita and Pochonia chlamydosporia by fluorogenic molecular probes. EPPO Bulletin, 35, 157–164.CrossRefGoogle Scholar
  12. Eriksson, O. E., & Hawksworth, D. L. (1985). Outline of the ascomycetes. Systema Ascomycetum, 4, 1–79.Google Scholar
  13. Escudero, N., & Lopez-Llorca, L. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.CrossRefGoogle Scholar
  14. Esteves, I., Peteira, B., Atkins, S., et al. (2009). Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycological Research, 113, 867–876.CrossRefPubMedGoogle Scholar
  15. Feng, M. G., Poprawski, T. J., & Khachatourians, G. G. (1994). Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology, 4, 3–34.CrossRefGoogle Scholar
  16. Feng, X. M., Holmberg, A. I. J., Sundh, I., et al. (2011). Specific SCAR markers and multiplex real-time PCR for quantification of two Trichoderma biocontrol strains in environmental samples. BioControl, 56, 903–913.CrossRefGoogle Scholar
  17. Flores-Camacho, R., Atkins, S. D., Manzanilla-López, R. H., et al. (2008). Characterization of Mexican isolates of Pochonia chlamydosporia var. chlamydosporia (Goddard) Gams and Zare for biological control of Nacobbus aberrans (Thorne) Thorne and Allen. Revista Mexicana de Fitopatología, 26, 93–104.Google Scholar
  18. Gams, W. (1988). A contribution to the knowledge of nematophagous species of Verticillium. Netherlands Journal of Plant Pathology, 94, 123–148.CrossRefGoogle Scholar
  19. Gams, W., & Zare, R. (2001). A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia, 72, 329–337.Google Scholar
  20. Gäumann E. (1926). Vergleichende Morphologie der pilze publisher in Fisher, Jena.Google Scholar
  21. Giné, A., Carrasquilla, M., Martínez-Alonso, M., et al. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science. doi: 10.3389/fpls.2016.00164.
  22. Glenn, A. E., Bacon, C. W., Price, R., et al. (1996). Molecular phylogeny of Acremonium and its taxonomic implicatioins. Mycologia, 88, 369–383.CrossRefGoogle Scholar
  23. Haarmann, T., Rolke, Y., Giesbert, S., et al. (2009). Ergot: From witchcraft to biotechnology. Molecular Plant Pathology, 10, 563–577.CrossRefPubMedGoogle Scholar
  24. Hidalgo-Diaz, L., Bourne, J. M., Kerry, B. R., et al. (2000). Nematophagous Verticillium spp. in soils infested with Meloidogyne spp. in Cuba: Isolation and screening. International Journal of Pest Management, 46, 277–284.CrossRefGoogle Scholar
  25. Hirsch, P. R., Mauchline, T. H., Mendum, T. A., et al. (2000). Detection of the nematophagous fungus Verticillium chlamydosporium in nematode-infested plant roots using PCR. Mycological Research, 104, 435–439.CrossRefGoogle Scholar
  26. Hirsch, P. R., Atkins, S. D., Mauchline, T. H., et al. (2001). Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant and Soil, 232, 21–30.CrossRefGoogle Scholar
  27. Hung, C. Y., Seshan, K. R., Yu, J. J., et al. (2005). A metalloproteinase of Coccidioides posadasii contributes to evasion of host detection. Infection and Immunity, 73, 6689–6703.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jia, Y., McAdams, S. A., Bryan, G. T., et al. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 19, 4004–4014.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Joaquim, T. R., & Rowe, R. C. (1990). Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology, 80, 1160–1166.CrossRefGoogle Scholar
  30. Kanzok, S. M., & Jacobs-Lorena, M. (2006). Entomopathogenic fungi as biological insecticides to control malaria. Trends in Parasitology, 22, 49–51.CrossRefPubMedGoogle Scholar
  31. Kepler, R. M., Sung, G. H., Harada, Y., et al. (2012). Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae). American Journal of Botany, 99, 552–561.CrossRefPubMedGoogle Scholar
  32. Kerry, B. R., Atkins, S., & Rovira, D. A. (1984). Observations on the introduction of Verticillium chlamydosporium and other parasitic fungi into soil for control of the cereal cyst-nematode Heterodera avenae. The Annals of Applied Biology, 105, 509–516.CrossRefGoogle Scholar
  33. Kerry, B. R., & Hirsch, P. R. (2011). Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. In K. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes (pp. 171–182). Netherlands: Springer.CrossRefGoogle Scholar
  34. Klimyuk, V. I., Carroll, B. J., Thomas, C. M., et al. (1993). Alkali treatment for rapid preparation of plant material for reliable PCR analysis. The Plant Journal, 3, 493–494.CrossRefPubMedGoogle Scholar
  35. Koveza, O. V., Kokaeva, Z. G., Gostimsky, S. A., et al. (2001). Creation of a SCAR marker in pea (Pisum sativum L.) using RAPD analysis. Russian Journal of Genetics, 37, 464–466.CrossRefGoogle Scholar
  36. Larriba, E., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.CrossRefPubMedGoogle Scholar
  37. Lin, R., Liu, C., Shen, B., et al. (2015). Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiology, 15, 15(1).Google Scholar
  38. Manzanilla-López, R. H., Atkins, S. D., Clark, I. M., et al. (2009a). Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Science and Technology, 19, 391–406.CrossRefGoogle Scholar
  39. Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2009b). Rapid and reliable DNA extraction and PCR fingerprinting methods to discriminate multiple biotypes of the nematophagous fungus Pochonia chlamydosporia isolated from plant rhizospheres. Letters in Applied Microbiology, 48, 71–76.CrossRefPubMedGoogle Scholar
  40. Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2011). Exploring competitiveness and variation in the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia and its significance for biological control. Bulletin OILB/SROP, 63, 37–40.Google Scholar
  41. Manzanilla-López, R. H., Esteves, I., Finetti-Sialer, M. M., et al. (2013). Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. Journal of Nematology, 45, 1–7.PubMedPubMedCentralGoogle Scholar
  42. Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2002). Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Applied and Environmental Microbiology, 68, 1846–1583.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mauchline, T. M., Kerry, B. R., & Hirsch, P. R. (2004). The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycological Research, 108, 161–169.CrossRefPubMedGoogle Scholar
  44. Medina-Canales, M. G., Rodríguez-Tovar, A. V., Manzanilla-López, R. H., et al. (2014). Identification and molecular characterisation of new Mexican isolates of Pochonia chlamydosporia for the management of Meloidogyne spp. Biocontrol Science and Technology, 24, 1–21.CrossRefGoogle Scholar
  45. Morton, A., Fabrett, A. M., Carder, J. H., et al. (1995). Sub-repeat sequences in ribosomal RNA intergenic regions of Verticillium albo-atrum and V. dahlie. Mycological Research, 99, 257–266.CrossRefGoogle Scholar
  46. Morton, C. O., Mauchline, T. H., Kerry, B. R., et al. (2003a). PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 198–205.CrossRefPubMedGoogle Scholar
  47. Morton, C. O., Hirsch, P. R., Peberdy, J., et al. (2003b). Cloning of a genetic variation in protease VCP1 from the nematophagus fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.CrossRefPubMedGoogle Scholar
  48. Muñoz-Saucedo LA, Tovar-Soto A, Rodríguez-Tovar AV et al. (2015). Phylogenetic analysis of native Mexican isolates of the nematophagous fungus Pochonia chlamydosporia. In: Abstracts of the XI Mexican congress of molecular and cell biology of fungi, Puebla, Mexico, October 25–29 2015.Google Scholar
  49. Muyzer, G., Brinkhoff, T., Nübel, U., et al. (2004). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In G. A. Kowalchuk, F. J. de Bruijn, I. M. Head, et al. (Eds.), Molecular Microbial Ecology Manual (Vol. 2, pp. 743–769). Dordrecht: Springer.Google Scholar
  50. Newport, G., Kuo, A., Flattery, A., et al. (2003). Inactivation of Kex2 diminishes the virulence of Candida albicans. The Journal of Biological Chemistry, 278, 1713–1720.CrossRefPubMedGoogle Scholar
  51. Niu, X. M., Wang, Y. L., Chu, Y. S., et al. (2010). Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Agricultural and Food Chemistry, 58, 828–834.CrossRefPubMedGoogle Scholar
  52. Nonaka, K., Ōmura, S., Masuma, R., et al. (2013). Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia, 105, 1202–1218.CrossRefPubMedGoogle Scholar
  53. Olivares-Bernabeu, C. M., & López-Llorca, L. V. (2002). Fungal egg parasites of plant-parasitic nematodes from Spanish soils. Revista Iberoamericana de Micología, 19, 104–110.Google Scholar
  54. Pérez, G., Verdejo, V., Gondim-Porto, C., et al. (2014). Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities. Journal of Zhejiang University. Science. B, 15, 966–978.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Peteira B. (2005). Caracterización del hongo nematofago cepa IMI SD 187 de Pochonia chlamydosporia var. catenulata (Kamischo ex barron y Onions) Zare y Gams. Thesis Universidad Agraria de La Habana, Cuba.Google Scholar
  56. Peteira, B., Puertas, A., Hidalgo-Díaz, L., et al. (2005). Real-time PCR to monitor and assess the efficacy of two types of inoculum of the nematophagous fungus Pochonia chlamydosporia var. catenulata against root-knot nematode populations in the field. Biotecnología Aplicada, 22, 261–266.Google Scholar
  57. Reeves, C. D., Hu, Z., Reid, R., et al. (2008). Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Applied and Environmental Microbiology, 74, 5121–5129.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rogerson, C. T. (1970). The hypocrealean fungi (Ascomycetes, Hypocreales). Mycologia, 62, 865–910.CrossRefPubMedGoogle Scholar
  59. Roger, A. J., Sandblom, O., Doolittle, W. F., et al. (1999). An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. Molecular Biology and Evolution, 16, 218–233.CrossRefPubMedGoogle Scholar
  60. Rosso, L., Ciancio, A., & Finetti-Sialer, M. (2007). Application of molecular methods for detection of Pochonia chlamydosporia from soil. Nematropica, 37, 1–8.Google Scholar
  61. Rosso, L. C., Finetti-Sialer, M. M., Hirsch, P. R., et al. (2011). Transcriptome analysis shows differential gene expression in the saprotrophic to parasitic transition of Pochonia chlamydosporia. Applied Microbiology and Biotechnology, 90, 1981–1994.CrossRefPubMedGoogle Scholar
  62. Smalla, K., & Heuer, H. (2006). How to assess the abundance and diversity of mobile genetic elements in soil bacterial communities? In P. Nannipieriand & K. Smalla (Eds.), Nucleic acids and proteins in soil (Vol. 8, pp. 313–330). Heidelberg: Springer.CrossRefGoogle Scholar
  63. Scauflaire, J., Gourgue, M., & Munaut, F. (2011). Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia, 103, 586–597.CrossRefPubMedGoogle Scholar
  64. Schardl, C. L., Young, C. A., Hesse, U., et al. (2013). Plant-symbiotic fungi as chemical engineers: Multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genetics, 9, e1003323.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shiba, T., & Sugawara, K. (2005). Resistance to the rice leaf bug, Trigonotylus caelestialium, is conferred by Neotyphodium endophyte infection of perennial ryegrass, Lolium perenne. Entomologia Experimentalis et Applicata, 115, 387–392.CrossRefGoogle Scholar
  66. Scholte, E. J., Ng’habi, K., Kihonda, J., et al. (2005). An entomopathogenic fungus for control of adult African malaria mosquitoes. Science, 308, 1641–1642.CrossRefPubMedGoogle Scholar
  67. Siddiqui, A., Atkins, S. D., & Kerry, B. R. (2009). Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. The Annals of Applied Biology, 155, 131–141.CrossRefGoogle Scholar
  68. Soloviev, D. A., Jawhara, S., & Fonzi, W. A. (2011). Regulation of innate immune response to Candida albicans infections by aMb2-Pra1p interaction. Infection and Immunity, 79, 1546–1558.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Spatafora, J. W., & Blackwell, M. (1993). Molecular systematics of unitunicate perithecial ascomycetes: The Clavicipitales-Hypocreales connection. Mycologia, 85, 912–922.CrossRefGoogle Scholar
  70. Sung, G. H., Spatafora, J. W., Zare, R., et al. (2001). A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia, 72, 311–328.Google Scholar
  71. Sung, G. H., Sung, J. M., Nigel, L. J., et al. (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, 44, 1204–1223.CrossRefPubMedGoogle Scholar
  72. Wang, Y., Li, L., Li, D., et al. (2015). Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. Journal of Agricultural and Food Chemistry, 63, 6577–6587.CrossRefPubMedGoogle Scholar
  73. Ward, E., Kerry, B. R., Manzanilla-López, R. H., et al. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: Implications for nematode biocontrol. PLoS One, 7(4), e35657.CrossRefPubMedPubMedCentralGoogle Scholar
  74. White, T. J., Bruns, T., Lee, S., et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innes, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). New York: Academic Press, Inc.Google Scholar
  75. Yang, J., Loffredo, A., Bonerman, J., et al. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia ibtained from a root-knot nematode suppressive soil. Journal of Nematology, 44, 67–71.PubMedPubMedCentralGoogle Scholar
  76. Zhu, M. L., Mo, M. H., Xia, Z. Y., et al. (2006). Detection of fungal biocontrol agents against root-knot nematodes by RAPD markers. Mycophatologia, 161, 307–316.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • María Gabriela Medina-Canales
    • 1
    Email author
  • Aída V. Rodríguez-Tovar
    • 1
  1. 1.Escuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations