Advertisement

Methodology Part II. Pochonia spp.: Screening and Isolate Selection for Managing Plant-Parasitic Nematodes

  • Ivânia EstevesEmail author
  • Rosa Navarrete-Maya
  • Rosa H. Manzanilla-López
Chapter
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Production of Pochonia spp. in laboratory conditions has facilitated studies on its biology, abundance, dispersion, rhizosphere colonization, host preference, and isolate virulence. Research in biological control of nematodes requires suitable, standardized methods. In this chapter we review the commonest, non-molecular, standard in vitro culture methods to isolate, screen, and select isolates, some of which may eventually be produced on a larger scale for application in combination with other management strategies for plant-parasitic nematodes.

References

  1. Aminuzzaman, F. M., Xie, H. Y., Duan, W. J., et al. (2013). Isolation of nematophagous fungi from eggs and females of Meloidogyne spp. and evaluation of their biological control potential. Biocontrol Science and Technology, 23, 170–182.CrossRefGoogle Scholar
  2. Arevalo, J., Hidalgo-Díaz, L., Martins, I., et al. (2009). Cultural and morphological characterization of Pochonia chlamydosporia and Lecanicillium psalliotae isolated from Meloidogyne mayaguensis eggs in Brazil. Tropical Plant Pathology, 34, 158–163.CrossRefGoogle Scholar
  3. Atkins, S. D., Clark, I. M., Sosnowska, D., et al. (2003). Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes by using conventional, PCR real-time PCR, selective media, and baiting. Applied and Environmental Microbiology, 69, 4788–4793.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ayatollahy, E., Fatemy, S., & Etebarian, H. R. (2008). Potential for biological control of Heterodera schachtii by Pochonia chlamydosporia var. chlamydosporia on sugar beet. Biocontrol Science and Technology, 18, 157–167.CrossRefGoogle Scholar
  5. Bernard, E. C., Self, L. H., & Tyler, D. D. (1997). Fungal parasitism of soybean cyst nematodes, Heterodera glycines (Nematoda: Heteroderidae) in different cropping-tillage regimes. Applied Soil Ecology, 5, 57–70.CrossRefGoogle Scholar
  6. Bordallo, J. J., Lopez-Llorca, L. V., Jansson, H. B., et al. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytologist, 154, 491–499.CrossRefGoogle Scholar
  7. Bourne, J. M., & Kerry, B. R. (1999). Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biology and Biochemistry, 31, 75–84.CrossRefGoogle Scholar
  8. Bourne, J. M., & Kerry, B. R. (2000). Observations on the survival and competitive ability of the nematophagous fungus Verticillium chlamydosporium in soil. International Journal of Nematology, 10, 9–18.Google Scholar
  9. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1994). Methods for the study of Verticillium chlamydosporium in the rhizosphere. Journal of Nematology, 26 (suppl), 587–591.Google Scholar
  10. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  11. Bourne, J. M., Karanja, P. K., Kalisz, H., et al. (2004). Incidence and severity of damage caused by Meloidogyne spp. and isolation and screening of the nematophagous fungus Pochonia chlamydosporia from some of the main vegetable growing areas in Kenya. International Journal of Nematology, 14, 111–122.Google Scholar
  12. Carneiro, R. M. D. G., Almeida, M. R. A., Martins, I., et al. (2008). Occurrence of Meloidogyne spp. and nematophagous fungi on vegetables in the Federal District of Brazil. Nematologia Brasileira, 32, 135–141.Google Scholar
  13. Chen, S. Y., & Chen, F. J. (2003). Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. Journal of Nematology, 35, 271–277.PubMedPubMedCentralGoogle Scholar
  14. Chen, S., & Dickson, D. W. (2012). Biological control. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical plant nematology (pp. 761–811). Mexico: BBA Biblioteca básica de agricultura, Editorial del Colegio de Postgraduados.Google Scholar
  15. Ciancio, A., Colagiero, M., Pentimone, I., et al. (2016). Formulation of Pochonia chlamydosporia for plant and nematode management. In N.K. Arora et al. (Eds.), Bioformulations for sustainable agriculture (pp. 177–197). Springer India.Google Scholar
  16. Clyde, J. M. F. (1993). The cyst nematode pathogen Verticillium chlamydosporium. PhD thesis, The University of Leeds, Department of Pure and Applied Biology, UK.Google Scholar
  17. Coutinho, M. M., Freitas, L. G., Dallemolle-Giaretta, R., et al. (2009). Control of Meloidogyna javanica by Pochonia chlamydosporia and papaya seed flour. Nematologia Brasileira, 33, 169–175.Google Scholar
  18. Crump, D. H. (1987a). A method for assessing the natural control of cyst nematode populations. Nematologica, 33, 232–243.CrossRefGoogle Scholar
  19. Crump, D. H. (1987b). Effect of time of sampling, method of isolation and age of the nematode on the species of fungi isolated from females of Heterodera schachtii and H. avenae. Revue de Nématologie, 10, 369–373.Google Scholar
  20. Crump, D. H. (1991). Estimation of suppressiveness and isolation of fungal parasites of cyst nematodes. In B. R. Kerry, & D. G. Crump (Eds.). Methods for studying nematophagous fungi. IOBC / WPRS Bulletin XIV (2):18–22.Google Scholar
  21. Crump, D. H., & Irving, F. (1992). Selection of isolates and methods of culturing Verticillium chlamydosporium and its efficacy as biological control agent of beet and potato cyst nematodes. Nematologica, 38, 367–374.CrossRefGoogle Scholar
  22. Crump, D. H., & Kerry, B. R. (1977). Maturation of females of the cereal cyst-nematode on oat roots and infection by an Entomophthora-like fungus in observation chambers. Nematologica, 23, 398–402.CrossRefGoogle Scholar
  23. Crump, D. H., & Kerry, B. R. (1981). A quantitative method for extracting resting spores of two nematode parasitic fungi, Nematophthora gynophila and Verticillium chlamydosporium from soil. Nematologica, 27, 330–338.CrossRefGoogle Scholar
  24. Crump, D. H., & Kerry, B. R. (1987). Studies on the population dynamics and fungal parasitism of Heterodera schachtii in soil from a sugar beet monoculture. Crop Protection, 6, 49–55.CrossRefGoogle Scholar
  25. Dallemole-Giaretta, R., Freitas, L. G., Lopes, E. A., et al. (2012). Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Protection, 42, 102–107.CrossRefGoogle Scholar
  26. de Haan, J., & Thijssen, L. (1991). A bioassay for assessing the potential of facultative parasites of the potato cyst nematode. In B. R. Kerry, D. G. Crump (Eds.). Methods for studying nematophagous fungi. IOBC / WPRS Bulletin XIV(2):29–33.Google Scholar
  27. De Leij, F. A. A. M., & Kerry, B. R. (1991). The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Revue de Nématologie, 14, 157–164.Google Scholar
  28. De Leij, F. A. A. M., Dennehy, J. A., & Kerry, B. R. (1992). The effect of temperature and nematode species on interactions between the nematophagous fungus Verticillium chlamydosporium and root-knot nematodes (Meloidogyne spp.) Nematologica, 38, 65–79.CrossRefGoogle Scholar
  29. De Leij, F. A. A. M., Kerry, B. R., & Dennehy, J. A. (1993a). Effect of watering on the distribution of Verticillium chlamydosporium in soil and the colonisation of egg masses of Meloidogyne incognita by the fungus. Nematologica, 39, 250–265.CrossRefGoogle Scholar
  30. De Leij, F. A. A. M., Kerry, B. R., & Dennehy, J. A. (1993b). Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and M. Hapla in pots and micro-plot tests. Nematologica, 39, 115–126.CrossRefGoogle Scholar
  31. Domsch, K. H., Gams, W., & Anderson, T.-H. (1980). Compendium of soil fungi. London: Academic.Google Scholar
  32. Escudero, N., & Lopez-Llorca, L. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.CrossRefGoogle Scholar
  33. Esteves, I. (2007). Factors affecting the performance of Pochonia chlamydosporia as a biological control agent for nematodes. Ph.D. Thesis. Cranfield University, United Kingdom.Google Scholar
  34. Flores-Camacho, R., Manzanilla-López, R. H., Cid del Prado-Vera, I., et al. (2007). Control of Nacobbus aberrans (Thorne, 1935) Thorne y Allen, 1944 with Pochonia chlamydosporia (= Verticillium chlamydosporium) (Goddard) Zare and W. Gams. Revista Mexicana de Fitopatología, 25, 26–34.Google Scholar
  35. Franco-Navarro, F., Vilchis-Martínez, K., & Miranda-Damián, J. (2009). New records of Pochonia chlamydosporia from Mexico: Isolation, root colonization and parasitism of Nacobbus aberrans eggs. Nematropica, 39, 133–142.Google Scholar
  36. Giné, A., Carrasquilla, M., Martínez-Alonso, M., et al. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science. doi: 10.3389/fpls.2016.00164.
  37. Grünwald, N. J., Workneh, F., Hu, S., et al. (1997). Comparison of an in vitro and a damping-off assay to test soils for suppressiveness to Pythium aphanidermatum. European Journal of Plant Pathology, 103, 55–63.CrossRefGoogle Scholar
  38. Hidalgo-Díaz, L., Bourne, J. M., Kerry, B. R., et al. (2000). Nematophagous Verticillium spp. in soils infested with Meloidogyne spp. in Cuba: Isolation and screening. International Journal of Pest Management, 46, 277–284.CrossRefGoogle Scholar
  39. Hirsch, P. R., Mauchline, T. H., Mendum, A., et al. (2000). Detection of the nematophagous fungus Verticillium chlamydosporium in nematode-infested plant roots using PCR. Mycological Research, 104, 435–439.CrossRefGoogle Scholar
  40. Hirsch, P. R., Atkins, D. S., Mauchline, T. H., et al. (2001). Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant and Soil, 232, 21–30.CrossRefGoogle Scholar
  41. Hooper, D. J. (1986). Extraction of free-living stages from soil. In J. F. Southey (Ed.), Laboratory methods for work with plant and soil nematodes (6th ed., pp. 5–30). London: Ministry of Agriculture, Fisheries and Food.Google Scholar
  42. Hua’an, Y., Sivasithamparam, K., & O’Brien, P. A. (1991). An improved technique for fluorescence staining of fungal nuclei and septa. Australasian Plant Pathology, 20, 119–121.CrossRefGoogle Scholar
  43. Hunt, D. J., & Handoo, Z. (2012). Root-knot nematodes. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical Plant Nematology (pp. 359–409). Mexico: BBA Biblioteca Básica de Agricultura, Editorial del Colegio de Postgraduados.Google Scholar
  44. Irving, F., & Kerry, B. R. (1986). Variation between strains of the nematophagous fungus, Verticillium chlamydosporium Goddard. II. Factors affecting parasitism of cyst nematode eggs. Nematologica, 32, 474–485.CrossRefGoogle Scholar
  45. Kerry, B. R. (1991). Preface. In B. R. Kerry, D. G. Crump (Eds.). Methods for studying nematophagous fungi. IOBC / WPRS Bulletin XIV (2):I–II.Google Scholar
  46. Kerry, B. R. (1995). New strategies for the management of plant parasitic nematodes with special emphasis on biological control. Arab Journal of Plant Protection, 13, 47–52.Google Scholar
  47. Kerry, B. R. (1997). Biological control of nematodes: Prospects and opportunities. FAO corporate document repository. Plant nematode problems and their control in the near east region. FAO plant production and Protection paper, 144. http://www.fao.org/docrep/v9978e/v9978e00.HTM. Accessed 14 Oct 2016.
  48. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.CrossRefPubMedGoogle Scholar
  49. Kerry, B. R., & Bourne, J. R. (1996). The importance of rhizosphere interactions in the biological control of plant parasitic nematodes – A case study using Verticillium chlamydosporium. Pesticide Science, 47, 69–75.CrossRefGoogle Scholar
  50. Kerry, B. R., & Bourne, J. (2002). A manual for research on Verticillium chlamydosporium a potential biocontrol agent for root-knot nematodes. Gent: IOBC/WPRS.Google Scholar
  51. Kerry, B. R., & Crump, D. H. (1977). Observations on fungal parasites of females and eggs of the cereal cyst-nematode, Heterodera avenae, and other cyst nematodes. Nematologica, 23, 193–201.CrossRefGoogle Scholar
  52. Kerry, B. R., Crump, D. H., & Mullen, L. (1982). Studies of the cereal cyst nematode, Heterodera avenae under continuous cereals, 1974-1978. 1. Plant growth and nematode multiplication. The Annals of Applied Biology, 100, 477–487.CrossRefGoogle Scholar
  53. Kerry, B. R., Simon, A., & Rovira, A. D. (1984). Observations on the introduction of Verticillium chlamydosporium and other parasitic fungi into soil for control of the cereal cyst-nematode Heterodera avenae. The Annals of Applied Biology, 105, 509–516.CrossRefGoogle Scholar
  54. Kerry, B. R., Irving, F., & Hornsey, J. C. (1986). Variation between strains of the nematophagous fungus, Verticillium chlamydosporium Goddard. I. Factors affecting growth in vitro. Nematologica, 32, 461–473.CrossRefGoogle Scholar
  55. Kirk, P. M., Cannon, P. F., Minter, D. W., et al. (2008). Dictionary of the fungi (10th ed.). Wallingford: CAB International.Google Scholar
  56. Lohmann, U., Sikora, R. A., & van den Boogert, P. (1991). Isolation and determination of the antagonistic potential of fungal endoparasites of nematodes. In B. R Kerry, & D. G. Crump (Eds.). Methods for studying nematophagous fungi. IOBC / WPRS Bulletin XIV(2):1–12.Google Scholar
  57. Lopez-Llorca, L. V., & Duncan, J. M. (1986). New media for the estimation of fungal infection in eggs of the cereal cyst nematode, Heterodera avenae Woll. Nematologica, 32, 486–490.CrossRefGoogle Scholar
  58. Lopez-Llorca, L. V., & Duncan, G. H. (1991). Effects of fungal parasites on cereal cyst nematode (Heterodera avenae Woll.) from naturally infested soil – A scanning electron microscopy study. Canadian Journal of Microbiology, 37, 218–225.CrossRefGoogle Scholar
  59. Lopez-Llorca, L. V., & Robertson, W. M. (1992). Ultrastructure of infection of cyst nematode eggs by the nematode fungus Verticillium suchlasporium. Nematologica, 39, 65–74.CrossRefGoogle Scholar
  60. Lopez-Llorca, L. V., Carbonell, T., & Salinas, J. (1999). Colonization of plant waste substrates by entomopathogenic and mycoparasitic fungi-a SEM study. Micron, 30, 325–333.CrossRefGoogle Scholar
  61. Lopez-Llorca, L. V., Olivares-Bernabeu, C., & Salinas, J. (2002a). Pre-penetration events in fungal parasitism of nematode eggs. Mycological Research, 106, 499–506.CrossRefGoogle Scholar
  62. Lopez-Llorca, L. V., Bordallo, J. J., Salinas, J., et al. (2002b). Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron, 33, 61–67.CrossRefPubMedGoogle Scholar
  63. Lopez-Llorca, L. V., Gómez-Vidal, S., Monfort, E., et al. (2010). Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genetics and Biology, 47, 342–351.CrossRefPubMedGoogle Scholar
  64. Luambano, N. D., Manzanilla-López, R. H., Kimenju, J. W., et al. (2015). Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biological Control, 80, 23–29.CrossRefGoogle Scholar
  65. Lumsden, R. D. (1981). A nylon fabric technique for studying the ecology of Pythium aphanidermatum and other fungi in soil. Phytopathology, 71, 282–285.CrossRefGoogle Scholar
  66. Lynch, J. M. (1996). Monitoring of antagonistic fungi, perspectives, needs and legislation. In D. F. Jensen, H. B. Hansson, & A. Tronsmo (Eds.), Monitoring antagonistic fungi deliberately released into the environment, Developments in Plant Pathology (Vol. 8, pp. 1–9). Dordrecht: Klower Academic Publishers.CrossRefGoogle Scholar
  67. Maciá-Vicente, J. G., Jansson, H. B., Talbot, N. J., et al. (2009a). Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. The New Phytologist, 182, 213–228.CrossRefPubMedGoogle Scholar
  68. Maciá-Vicente, J. G., Rosso, L. C., Ciancio, A., et al. (2009b). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. The Annals of Applied Biology, 155, 391–401.CrossRefGoogle Scholar
  69. Manzanilla-López, R. H., Atkins, S. D., Clark, I. M., et al. (2009). Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Science and Technology, 19, 391–406.CrossRefGoogle Scholar
  70. Manzanilla-López, R. H., Esteves, I., Powers, S. J., et al. (2011a). Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. The Annals of Applied Biology, 159, 118–129.CrossRefGoogle Scholar
  71. Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2011b). Exploring competitiveness and variation in the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia and its significance for biological control. Bulletin OILB/SROP, 63, 37–40.Google Scholar
  72. Manzanilla-López, R. H., Devonshire, J., Ward, E., et al. (2014). Cryo-scanning electron microscopy with cryo-planning: A complementary approach for studying the infection of Meloidogyne incognita by Pochonia chlamydosporia. Nematology, 16, 1059–1067.CrossRefGoogle Scholar
  73. Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2002). Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Applied and Environmental Microbiology, 68, 1846–1583.CrossRefPubMedPubMedCentralGoogle Scholar
  74. McSorley, R. (2011). Overview of organic amendments for management of plant-parasitic nematodes with case studies from Florida. Journal of Nematology, 43, 69–81.PubMedPubMedCentralGoogle Scholar
  75. Mead, R., Curnow, R., & Hasted, A. M. (2003). Statistical methods in agriculture and experimental biology (3rd ed.). Boca Raton: Chapman and Hall.Google Scholar
  76. Medina-Canales, M. G., Rodríguez-Tovar, A. V., Manzanilla-López, R. H., et al. (2013). Identification and molecular characterisation of new Mexican isolates of Pochonia chlamydosporia for the management of Meloidogyne spp. Biocontrol Science and Technology, 24, 1–21.CrossRefGoogle Scholar
  77. Menéndez, A., Bertoni, M. D., & Cabral, D. (1997). Endofitos fúngicos en Juncus imbricatus var chamissonis: identificación de los patrones de colonización. Revista Iberoamericana de Micología, 14, 125–128.PubMedGoogle Scholar
  78. Mian, I. H., & Rodríguez-Kábana, R. (1982). Survey of the nematicidal properties of some organic materials available in Alabama as amendments to soil for control of Meloidogyne arenaria. Nematropica, 12, 235–246.Google Scholar
  79. Mitchinson, S. M. (2009). New cyst nematode threats to cereals in Southern Britain. Reading: Reading University.Google Scholar
  80. Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.CrossRefGoogle Scholar
  81. Monfort, E., Lopez-Llorca, L. V., Hans-Börje, J., et al. (2006). In vitro soil receptivity assays to egg-parasitic nematophagous fungi. Mycological Progress, 5, 18–23.CrossRefGoogle Scholar
  82. Moosavi, M. R., Zare, R., Zamanizadeh, H. R., et al. (2010). Pathogenicity of Pochonia species of Meloidogyne javanica. Journal of Invertebrate Pathology, 104, 125–133.CrossRefPubMedGoogle Scholar
  83. Morgan-Jones, G., Godoy, G., & Rodríguez-Kábana, R. (1981). Verticillium chlamydosporium, fungal parasite of Meloidogyne arenaria females. Nematropica, 11, 115–119.Google Scholar
  84. Morton, C. O., Mauchline, T. H., Kerry, B. R., et al. (2003). PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 198–205.CrossRefPubMedGoogle Scholar
  85. Nagesh, M., Hussaini, S. S., Ramanujam, B., et al. (2007). Molecular identification, characterization, variability and infectivity of Indian isolates of the nematophagous fungus Pochonia chlamydosporia. Nematologia Mediterranea, 37, 47–56.Google Scholar
  86. Nicolay, R., & Sikora, R. A. (1989). Techniques to determine the activity of fungal egg parasites of Heterodera schachtii in field soil. Revue de Nématologie, 12, 97–102.Google Scholar
  87. Nicolay, R., & Sikora, R. A. (1991). Estimation of the activity of fungi parasitic on nematode eggs. In B. R. Kerry & D. G. Crump (Eds.). Methods for studying nematophagous fungi. IOBC / WPRS Bulletin XIV(2):23–28.Google Scholar
  88. Olivares-Bernabeu, C. M., & López-Llorca, L. V. (2002). Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. Revista Iberoamericana de Micología, 19, 104–110.Google Scholar
  89. Podestá, G. S., Dallemole-Giaretta, R., Freitas, L. G., et al. (2009). Actividade nematófaga de Pochonia chlamydosporia em solo natural ou autoclavado sobre Meloidogyne javanica. Nematologia Brasileira, 33, 191–193.Google Scholar
  90. Powers, S. J. (2012). Statistics in nematology. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical plant nematology (pp. 841–870). Mexico: BBA Biblioteca básica de agricultura, Editorial del Colegio de Postgraduados.Google Scholar
  91. Pyrowolakis, A., Schuster, R. F., & Sikora, R. A. (1999). Effect of cropping pattern and green manure on the antagonistic potential and the diversity of egg pathogenic fungi in fields with Heterodera schachtii infection. Nematology, 1, 165–171.CrossRefGoogle Scholar
  92. Pyrowolakis, A., Westphal, A., Sikora, R. A., et al. (2002). Identification of root-knot nematode suppressive soils. Applied Soil Ecology, 19, 51–56.CrossRefGoogle Scholar
  93. Rayner, A. D. M., & Todd, N. K. (1979). Population and community structures and dynamics of fungi in decaying wood. Advances in Botanical Research, 7, 333–420.CrossRefGoogle Scholar
  94. Rodríguez-Kábana, R., Morgan-Jones, G., Godoy, G., et al. (1984). Effectiveness of species of Gliocladium, Paecilomyces and Verticillium for control of Meloidogyne arenaria in field soil. Nematropica, 14, 155–170.Google Scholar
  95. Schulz, B., Haas, S., Junker, C., et al. (2015). Fungal endophytes are involved in multiple balanced antagonisms. Current Science, 109, 39–45.Google Scholar
  96. Shen, Q., Kirschbaum, M. U. F., Hedley, M. J., et al. (2016). Testing an alternative method for estimating the length of fungal hyphae using photomicrography and image processing. PloS One, 11(6), edD157017. doi: 10.1371/journal.pone.0157017.Google Scholar
  97. Shepherd, A. M. (1986). Extraction and estimation of cyst nematodes. In J. F. Southey (Ed.), Laboratory methods for work with plant and soil nematodes (6th ed., pp. 31–49). London: Ministry of Agriculture, Fisheries and Food.Google Scholar
  98. Siddiqui, A., Atkins, S. D., & Kerry, B. R. (2009). Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. The Annals of Applied Biology, 155, 131–141.CrossRefGoogle Scholar
  99. Sikora, R. A., & Carter, W. W. (1987). Nematode interactions with fungal and bacterial plant pathogens –fact or fantasy. In J. A. Veech & D. W. Dickson (Eds.), Vistas on Nematology: A commemoration of the twenty-fifth anniversary of the society of nematologists (pp. 307–312). De Leon Springs: E.O. Painter Printing Co..Google Scholar
  100. Stirling, G. R. (1979). Techniques for detecting Dactylella oviparasitica and evaluating its significance in field soils. Journal of Nematology, 11, 99–100.PubMedPubMedCentralGoogle Scholar
  101. Stirling, G. R. (1991). Biological control of plant-parasitic nematodes. Wallingford: CAB International.Google Scholar
  102. Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture (2nd ed.). Croydon: CABI.Google Scholar
  103. Subbotin, S. (2012). Cyst nematodes. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical Plant Nematology (pp. 299–357). Mexico: BBA Biblioteca básica de agricultura, Editorial del Colegio de Postgraduados.Google Scholar
  104. Sun, M., Gao, L., Shi, Y., et al. (2006). Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. Journal of Invertebrate Pathology, 93, 22–28.CrossRefPubMedGoogle Scholar
  105. Sykes, D. (1994). The growth and sporulation of Verticillium chlamydosporium. MSc thesis, University of Manchester, UK.Google Scholar
  106. Tennant, D. (1975). A test of modified line intersect method of establishing root length. Journal of Ecology, 63, 995–1001.CrossRefGoogle Scholar
  107. Timper, P. (2014). Conserving and enhancing biological control of nematodes. Journal of Nematology, 46, 75–89.PubMedPubMedCentralGoogle Scholar
  108. Verdejo-Lucas, S., Ornat, C., Sorribas, F. J., et al. (2002). Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona, Spain. Journal of Nematology, 34, 405–408.PubMedPubMedCentralGoogle Scholar
  109. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., et al. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Physiology, 40, 309–348.Google Scholar
  110. Westphal, A., & Becker, J. O. (1999). Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology, 89, 434–440.CrossRefPubMedGoogle Scholar
  111. Westphal, A., & Becker, J. O. (2000). Transfer of biological soil suppressiveness against Heterodera schachtii. Phytopathology, 90, 401–406.CrossRefPubMedGoogle Scholar
  112. Yang, J., Loffredo, A., Borneman, J., et al. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil. Journal of Nematology, 44, 67–71.PubMedPubMedCentralGoogle Scholar
  113. Zare, R., Gams, W., & Evans, H. C. (2001). A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 73, 51–86.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ivânia Esteves
    • 1
    Email author
  • Rosa Navarrete-Maya
    • 2
  • Rosa H. Manzanilla-López
    • 3
  1. 1.CFE-Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de FreitasUniversity of CoimbraCoimbraPortugal
  2. 2.UNIGRAS (Unidad de Investigación en Granos y Semillas), Facultad de Estudios Superiores CuautitlánUniversidad Nacional Autónoma de MéxicoCuautitlán IzcalliMexico
  3. 3.Centro de Desarrollo de Productos Bióticos (Visiting Professor)YautepecMexico

Personalised recommendations