Skip to main content

Grain-Scale Simulation of Shock Initiation in Composite High Explosives

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 25))

Abstract

Many of the safety properties of solid energetic materials are related to microstructural features. The mechanisms coupling microstructural features to safety, however, are difficult to directly measure. Grain-scale simulation is a rapidly expanding area which promises to improve our understanding of energetic material safety. In this chapter, we review two approaches to grain-scale simulation. The first is multi-crystal simulations, which emphasize the role of multi-crystal interactions in determining the response of the material. The second is single-crystal simulations, which emphasize a more detailed treatment of the chemical and physical processes underlying energetic material safety.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Köhler J, Meyer R (1993) Explosives, fourth edition. VCH, Weinheim, FRG

    Google Scholar 

  2. Teipel U (2005) Energetic materials: particle processing and characterization. Wiley-VCH, Weinheim, FRG

    Google Scholar 

  3. Bowden FP, Yoffe AD (1952) Ignition and growth of explosions in liquids and solids. Cambridge University Press, UK

    Google Scholar 

  4. Campbell AW, Davis WC, Ramsay JB, Travis JR (1961) Shock initiation of solid explosives. Phys Fluids 4(4):511–521

    Article  Google Scholar 

  5. Field JE, Swallowe GM, Heavens SN (1982) Ignition mechanisms of explosives during mechanical deformation. Proc Roy Soc Lond A Mat 382(1782):231–244

    Article  CAS  Google Scholar 

  6. Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25(11):489–496

    Google Scholar 

  7. Garcia F, Vandersall KS, Tarver CM (2014) Shock initiation experiments with ignition and growth modeling on low density HMX. J Phys: Conf Ser 500:052048

    Google Scholar 

  8. Tarver Craig M, Chidester Steven K, Nichols Albert L (1996) Critical conditions for impact- and shock-induced hot spots in solid explosives. J Phys Chem 100:5794–5799

    Article  CAS  Google Scholar 

  9. Charles L Mader (1997) Numerical modeling of explosives and propellants. CRC press, USA

    Google Scholar 

  10. Benson DJ, Conley P (1999) Eulerian finite-element simulations of experimentally acquired HMX microstructures. Modell Simul Mater Sci Eng 7:333–354

    Article  Google Scholar 

  11. Baer MR (2002) Modeling heterogeneous energetic materials at the mesoscale. Thermochim Acta 384:351–367

    Article  CAS  Google Scholar 

  12. Menikoff R (2004) Pore collapse and hot spots in HMX. Proc APS Topical Group Shock Compression Condens Matter 706:393–396

    Article  Google Scholar 

  13. Barton Nathan R, Winter Nicholas W, Reaugh John E (2009) Defect evolution and pore collapse in crystalline energetic materials. Modell Simul Mater Sci Eng 17:035003

    Article  Google Scholar 

  14. Najjar FM, Howard WM, Fried LE, Manaa MR, Nichols A III, Levesque G (2012) Computational study of 3-D hot spot initiation in shocked insensitive high-explosive. Proc APS Topical Group Shock Compression Condens Matter 1426:255–258

    CAS  Google Scholar 

  15. Kapahi A, Udaykumar HS (2013) Dynamics of void collapse in shocked energetic materials: physics of void–void interactions. Shock Waves 23(6):537–558

    Article  Google Scholar 

  16. Springer HK, Tarver CM, Reaugh JE, May CM (2014) Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations. J Phys: Conf Ser 500:052041

    Google Scholar 

  17. Kapahi A, Udaykumar HS (2015) Three-dimensional simulations of dynamics of void collapse in energetic materials. Shock Waves 25(2):177–187

    Article  Google Scholar 

  18. Rice BM (2012) Multiscale modeling of energetic material response: Easy to say, hard to do. Shock Compression Condens Matter—2011, Parts 1 and 2 1426:1241–1246

    Google Scholar 

  19. Brennan JK, Lisal M, Moore JD, Izvekov S, Schweigert IV, Larentzos JP (2014) Coarse-grain model simulations of non-equilibrium dynamics in heterogeneous materials. J Phys Chem Lett 5:2144–2149

    Google Scholar 

  20. Skidmore CB, Phillips DS, Howe PM, Mang JT, Romero AJ (1999) The evolution of microstructural changes in pressed HMX explosives. In: 11th international detonation symposium, p 556

    Google Scholar 

  21. Wixom RR, Tappan AS, Brundage AL, Knepper R, Ritchey MB, Michael JR, Rye MJ (2010) Characterization of pore morphology in molecular crystal explosives by focused ion beam nanotomography. J Mater Res 25(7):1362

    Article  CAS  Google Scholar 

  22. Willey TM, van Buuren T, Lee JR, Overturf GE, Kinney JH, Handly J, Weeks BL, Ilavsky J (2006) Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering. Prop, Explos, Pyrotech 31(6):466

    Google Scholar 

  23. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  24. Kumar NC (2008) Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms. Comp Mater Sci 42:352

    Article  CAS  Google Scholar 

  25. ParticlePack Friedman G, Manual User (2015) Version 3:1

    Google Scholar 

  26. Mader C L. The two-dimensional hydrodynamic hot spot, volume IV. Los Alamos National Laboratory Technical Report, LA-3771, 1967

    Google Scholar 

  27. Mader CL, Kershner JD (1967) Three-dimensional modeling of shock initiation of heterogeneous explosives. In: 19th International Combustion Symposium, p 685

    Google Scholar 

  28. Mader CL, Kershner JD (1985) The three-dimensional hydrodynamic hot-spot model. In: 8th International Detonation Symposium, p 42

    Google Scholar 

  29. Baer MR, Kipp ME, van Swol F (1999) Micromechanical modeling of heterogeneous energetic materials. In: International detonation symposium, p 788

    Google Scholar 

  30. Barua A, Zhou M (2011) A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model Simul Mater Sci Eng 19:055001

    Article  Google Scholar 

  31. Barua A, Horie Y, Zhou M (2012) Energy localization in HMX-estane polymer-bonded explosives during impact loading. J Appl Phys 111(5):054902

    Article  Google Scholar 

  32. Panchadhara R, Gonthier KA (2011) Mesoscale analysis of volumetric and surface dissipation in granular explosive induced by uniaxial deformation waves. Shock Waves 21:43

    Article  Google Scholar 

  33. Barua A, Kim S, Horie Y, Zhou M (2013) Ignition criteria for heterogeneous energetic materials based on hotspot size-temperature threshold. J Appl Phys 113:064906

    Article  Google Scholar 

  34. Kim S, Barua A, Horie Y, Zhou M (2014) Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity. J Appl Phys 115(17):174902

    Article  Google Scholar 

  35. Reaugh JE (2002) Grain-scale dynamics in explosives. Technical Report UCRL-ID-150388-2002, Lawrence Livermore National Laboratory

    Google Scholar 

  36. Lee EL, Tarver CM (1980) Phenomenological model of shock initiation in heterogeneous explosives. Phys Fluids 23(12):2362–2372

    Article  CAS  Google Scholar 

  37. Henson BF, Asay BW, Smilowitz LB, Dickson PM (2001) Ignition chemistry in HMX from thermal explosion to detonation. Technical report LA-UR-01-3499, Los Alamos National Laboratory

    Google Scholar 

  38. Springer HK, Vandersall KS, Tarver CM, Souers PC (2015) Investigating shock initiation and detonation in powder HMX with reactive mesoscale simulations. In: 15th International detonation symposium

    Google Scholar 

  39. Ryan AA, Nathan RB, John ER, Laurence EF (2015) Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal. J Appl Phys 117(18):185902

    Google Scholar 

  40. Moore JD, Barnes BC, Izvekov S, Lisal M, Sellers MS, Taylor DE (2016) A coarse-grain force field for RDX: density dependent and energy conserving. J Chem Phys 144(10):104501

    Article  Google Scholar 

  41. Tzu-Ray S, Aidan PT (2014) Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void. J Phys: Conf Ser 500:172009

    Google Scholar 

  42. Cady HH, Larson AC, Cromer DT (1963) The crystal structure of alpha-HMX and a refinement of the structure of beta-HMX. Acta Cryst 16:617–623

    Article  CAS  Google Scholar 

  43. Chang SC, Henry PB (1970) A study of the crystal structure of-cyclotetramethylene tetranitramine by neutron diffraction. Acta Cryst. B., 26(9):1235–1240, 1970

    Google Scholar 

  44. Elizabeth AG, Joseph MZ, Alan KB (2009) Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa. J Phys Chem A 113(48):13548–13555

    Google Scholar 

  45. Choong-Shik Y, Hyunchae C (1999) Equation of state, phase transition, decomposition of β-HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine) at high pressures. J Chem Phys 111(22):10229–10235

    Google Scholar 

  46. Ralph M, Thomas DS (2002) Constituent properties of HMX needed for mesoscale simulations. Combust Theor Model 6(1):103–125

    Google Scholar 

  47. Sheen DB, Sherwood JN, Gallagher HG, Littlejohn AH, Pearson A (1993) An investigation of mechanically induced lattice defects in energetic materials. Technical report, Final Report to the US Office of Naval Research

    Google Scholar 

  48. Dick JJ, Hooks DE, Menikoff R, Martinez AR (2004) Elastic-plastic wave profiles in cyclotetramethylene tetranitramine crystals. J Appl Phys 96(1):374–379

    Article  CAS  Google Scholar 

  49. Thomas DS, Ralph M, Dmitry B, Grant DS (2003) A molecular dynamics simulation study of elastic properties of HMX. J Chem Phys 119(14):7417–7426

    Google Scholar 

  50. Marsh SP (1980) LASL Shock Hugoniot data. University of California Press, Berkeley, CA

    Google Scholar 

  51. Zaug JM, Armstrong MR, Crowhurst JC, Ferranti L, Swan R, Gross R, Teslich Jr NE, Wall MA, Austin RA, Fried LE (2014) Ultrafast dynamic response of single crystal PETN and beta-HMX. In: 15th international detonation symposium

    Google Scholar 

  52. Laurence EF, Howard WH (1998) An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen. J Chem Phys 109(17):7338–7348

    Article  Google Scholar 

  53. Dmitry B, Grant DS, Thomas DS (2000) Temperature-dependent shear viscosity coefficient of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX): a molecular dynamics simulation study. J Chem Phys 112(16):7203–7208

    Google Scholar 

  54. Baytos JF (1979) Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally. Technical report LA-8034-MS, Los Alamos Scientific Laboratory

    Google Scholar 

  55. Long Y, Liu YG, Nie FD, Chen J (2012) A method to calculate the thermal conductivity of HMX under high pressure. Philos Mag 92(8):1023–1045

    Article  CAS  Google Scholar 

  56. John Z, Rogers RN (1962) Thermal initiation of explosives. J Phys Chem 66(12):2646–2653

    Google Scholar 

  57. Rogers RN (1972) Differential scanning calorimetric determination of kinetics constants of systems that melt with decomposition. Thermochim Acta 3(6):437–447

    Google Scholar 

  58. McGuire RR, Tarver CM (1981) Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives. In Proceedings of the 7th international detonation symposium, pp 56–64

    Google Scholar 

  59. Craig MT, Tri DT (2004) Thermal decomposition models for HMX-based plastic bonded explosives. Combust Flame 137(1):50–62

    Google Scholar 

  60. Jack JY, Matthew AM, Jon LM, Albert LN, Craig MT (2006) Simulating thermal explosion of octahydrotetranitrotetrazine-based explosives: model comparison with experiment. J Appl Phys 100(7):073515

    Google Scholar 

  61. Aaron PW, William MH, Alan KB, Albert LN III (2008) An LX-10 kinetic model calibrated using simulations of multiple small-scale thermal safety tests. J Phys Chem A 112(38):9005–9011

    Google Scholar 

  62. Albert LN (2007) ALE-3D user’s manual

    Google Scholar 

  63. Coffey CS, Sharma J (2001) Lattice softening and failure in severely deformed molecular crystals. J Appl Phys 89(9):4797–4802

    Article  CAS  Google Scholar 

  64. Sharma J, Armstrong RW, Elban WL, Coffey CS, Sandusky HW (2001) Nanofractography of shocked RDX explosive crystals with atomic force microscopy. Appl Phys Lett 78(4):457–459

    Article  CAS  Google Scholar 

  65. Jamarillo E, Sewell TD, Strachan A (2007) Atomic-level view of inelastic deformation in a shock loaded molecular crystal. Phys Rev B 76:064112

    Article  Google Scholar 

  66. Cawkwell MJ, Thomas DS, Lianqing Z, Donald LT (2008) Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations. Phys Rev B 78(1):014107

    Google Scholar 

  67. Minnich AJ (2015) Advances in the measurement and computation of thermal phonon transport properties. J Phys: Condens Matter 27(5):053202

    CAS  Google Scholar 

  68. Harry KS, Elizabeth AG, John ER, James K, Jon LM, Mark LE, William TB, John PB, Jennifer LJ, Tracy JV (2012) Mesoscale modeling of deflagration-induced deconsolidation in polymer-bonded explosives. In Proceedings of the APS topical group on shock compression of condensed matter, vol 1426, p 705

    Google Scholar 

  69. Rae PJ, Hooks DE, Liu C (2006) The stress versus strain response of single β-HMX crystals in quasi-static compression. In Proceeding of the 13th international detonation symposium, p 293–300

    Google Scholar 

  70. Kang J, Butler PB, Baer MR (1992) A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials. Combust Flame 89:117

    Article  CAS  Google Scholar 

  71. Massoni J, Saurel R, Baudin G, Demol G (1999) A mechanistic model for shock initiation of solid explosives. Phys Fl 11:710

    Article  CAS  Google Scholar 

  72. Nichols III AL, Tarver CM (2003) A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives. 12th Int Det Symp 489

    Google Scholar 

  73. Nichols AL III (2006) Statistical hot spot model for explosive detonation. AIP Conf Proc 845:465

    Article  CAS  Google Scholar 

  74. Willey TM, Lauderbach L, Gagliardi F, van Buuren T, Glascoe EA, Tringe JW, Lee JR, Springer HK, Ilavsky J (2015) Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through β–δ phase transition. J. Appl. Phys., 118:055901, 2015

    Google Scholar 

  75. Reproduced with permission from Austin RA, Barton NR, Reaugh JE, Fried LE J Appl Phys 117:185902. Copyright 2015, AIP Publishing LLC

    Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-BOOK-692711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence E. Fried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Austin, R.A., Springer, H.K., Fried, L.E. (2017). Grain-Scale Simulation of Shock Initiation in Composite High Explosives. In: Shukla, M., Boddu, V., Steevens, J., Damavarapu, R., Leszczynski, J. (eds) Energetic Materials. Challenges and Advances in Computational Chemistry and Physics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-59208-4_8

Download citation

Publish with us

Policies and ethics