Skip to main content

High Explosives and Propellants Energetics: Their Dissolution and Fate in Soils

  • Chapter
  • First Online:
Energetic Materials

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 25))

Abstract

Live-fire military training scatters energetic compounds onto range soils. Once deposited on soil the explosives and propellants ingredients can dissolve in water, experience complex interactions with soil constituents, and migrate to groundwater. While in contact with soil these chemicals are also subject to biotic and abiotic (hydrolysis, photolysis, and reaction with metals) transformation both in the solid and in the aqueous state. In this chapter we summarize the current state of knowledge on how energetic residues are deposited on range soils, what the residues look like and how quickly they dissolve. We also describe the key physicochemical properties (aqueous solubility, (S w ) pH, octanol-water partitioning coefficient, (\(K_{ow}\))) of the energetic compounds in high explosives and propellants and how these parameters influence their biogeochemical interactions with soil. Knowing the reaction routes of these chemicals will help us understand their fate, their ecological impact, and how to enhance in situ remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-ADNT:

2-amino-4,6-dinitrotoluene

4-ADNT:

4-amino-2,6,-dinitrotoluene

2,4-DANT:

2,4-diamino-6-nitrotoluene

2,6-DANT:

2,6-diamino-4-nitrotoluene

2,4-DNT:

2,4-dinitrotoluene

2,6-DNT:

2,6-dinitrotoluene

ATSDR:

Agency for Toxic Substances and Disease Registry

CEC:

Cation exchange capacity

Comp B:

Composition B, a high explosive composed of 60-39-1, RDX-TNT-wax

DoD:

Department of Defense

DNX:

Hexahydro-3,5-dinitroso-1-nitro-1,3,5-triazine

EDAX:

Energy dispersive X-ray spectrometer

EOD:

Explosives ordnance disposal

EPA:

Environmental Protection Agency

ERDC:

Engineer Research and Development Center

ER:

Environmental restoration

HE:

High explosive

HMX:

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

HPLC:

High performance liquid chromatography

K d :

Soil adsorption coefficient

K ow :

Octanol-water partition coefficient

K OC :

Organic carbon adsorption coefficient

MC:

Munitions constituent

MNX:

Hexahydro-1-nitroso-3,5-dinitro-triazine

NC:

Nitrocellulose

NC or NC + 2,4-DNT:

Single-base propellant

NC + NG:

Double-base propellant

NC + NG + NQ:

Triple-base propellant

NDAB:

Nitro-2,4-diazabutanal

NG:

Nitroglycerin

NQ:

Nitroguanidine

NT:

Nitrotoluene

OC:

Organic carbon

OM:

Organic matter

pKa :

Acid disassociation constant

RDX:

Hexahydro-1,3,5-trinitro-1,3,5-triazine

S w :

Aqueous solubility

TAT:

2,4,6-triaminotoluene

TNT:

2,4,6-trinitrotoluene

TNX:

Hexahydro-1,3,5-trinitroso-1,3,5-triazine

Tritonal:

Explosive made from ~80% TNT and 20% aluminum

UXO:

Unexploded ordnance

References

  1. Jenkins TF, Hewitt AD, Grant CL, Thiboutot S, Ampleman G, Walsh ME, Ranney TA, Ramsey CA, Palazzo AJ, Pennington JC (2006) Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere 63:1280–1290

    Article  CAS  Google Scholar 

  2. Spain JC, Hughes JB, Knackmuss H-J (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  3. ATSDR (1995) Toxicological profile for 2,4,6-trinitrotoluene and RDX. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  4. Environmental Protection Agency. In the Matter of Training Range and Impact Area, Massachusetts Military Reservation. Administration Order for Response Action; EPA Docket Number SDWA-1-2000-0014; U. S. EPA Region 1: 2000

    Google Scholar 

  5. Taylor S, Dontsova K, Bigl S, Richardson C, Lever J, Pitt J, Bradley JP, Walsh M, Šimůnek J (2012) Dissolution rate of propellant energetics from nitrocellulose matrices. Cold Regions Research and Engineering Laboratory, Hanover, NH

    Google Scholar 

  6. Jenkins TF, Pennington JC, Ampleman G, Thiboutot S, Walsh MR, Diaz E, Dontsova KM, Hewitt AD, Walsh ME, Bigl SR, Taylor S, MacMillan DK, Clausen JL, Lambert D, Perron NM, Lapointe MC, Brochu S, Brassard M, Stowe R, Farinaccio R, Gagnon A, Marois A, Gilbert D, Faucher D, Yost S, Hayes C, Ramsey CA, Rachow RJ, Zufelt JE, Collins CM, Gelvin AB, Saari SP (2007) Characterization and fate of gun and rocket propellant residues on testing and training ranges: interim report 1. Engineer Research and Development Center

    Google Scholar 

  7. Walsh ME, Thiboutot S, Walsh ME, Ampleman G, Martel R, Poulin I, Taylor S (2011) Characterzation and fate of gun and rocket propellant residues on testing and training ranges. ERDC/CRREL TR-11-13

    Google Scholar 

  8. Taylor S, Jenkins TF, Rieck H, Bigl S, Hewitt AD, Walsh ME, Walsh MR (2011) MMRP guidance document for soil sampling of energetics and metals. Cold Regions Research and Engineering Laboratory, Hanover, NH

    Book  Google Scholar 

  9. Walsh ME, Thiboutot S, Walsh ME, Ampleman G (2012) Controlled expedient disposal of excess gun propellant. J Hazard Mater 15:219–220

    Google Scholar 

  10. Taylor S, Campbell E, Perovich L, Lever J, Pennington J (2006) Characteristics of composition B particles from blow-in-place detonations. Chemosphere 65:1405–1413

    Article  CAS  Google Scholar 

  11. Taylor S, Hewitt A, Lever J, Hayes C, Perovich L, Thorne P, Daghlian C (2004) TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere 55:357–367

    Article  CAS  Google Scholar 

  12. Dauphin L, Doyle C (2000) Study of ammunition dud and low-order detonation rates. Aberdeen proving ground, U.S. Army Environmental Center report SFIM-ACE-ET-CR-200049, MD

    Google Scholar 

  13. Thiboutot S, Ampleman G, Gagnon A, Marois A, Jenkins TF, Walsh ME, Thorne PG, Ranney TA (1998) Characterization of antitank firing ranges at CFB Valcartier, WATC Wainwright and CFAD Dundurn. Report DREV-R-9809

    Google Scholar 

  14. Hewitt AD, Bigl SR, Walsh ME, Brochu S (2007a) Processing of training range soils for the analysis of energetic compounds. ERDC/CRREL TR-07-15

    Google Scholar 

  15. Hewitt AD, Jenkins TF, Walsh ME, Walsh MR, Bigl SR, Ramsey CA (2007b). Protocols for collection of surface soil samples at military training and testing ranges for the characterization of energetic munitions constituents. ERDC-CRREL TR-07-10

    Google Scholar 

  16. Clausen JL, Richardson J, Perron N, Gooch G, Hall T, Butterfield E (2012) Evaluation of sampling and sample preparation modifications for soil containing metallic residues, ERDC TR-12-1

    Google Scholar 

  17. Taylor S, Lever JH, Fadden J, Perron N, Packer B (2009) Simulated rainfall-driven dissolution of TNT, tritonal, Comp B and Octol particles. Chemosphere 75:1074–1081

    Article  CAS  Google Scholar 

  18. Lever JH, Taylor S, Perovich L, Bjella K, Packer B (2005) Dissolution of composition B detonation residuals. Environ Sci Technol 39:8803–8811

    Article  CAS  Google Scholar 

  19. Taylor S, Richardson C, Lever JH, Pitt JS, Bigl S, Perron N, Bradley JP (2011) Dissolution of nitroglycerin from small arms propellants and their residues. Int J Energ Mater Chem Propuls 10:397–419

    Google Scholar 

  20. Yazici R, Kalyon DM, Fair D (1998) Microstructure and mixing distribution analysis in M30 triple-base propellants. U.S. Army Armament Research, Development and Engineering Center, Warheads, Energetics and Combat-support Armaments Center, Picatinny Arsenal, New Jersey

    Google Scholar 

  21. Levy ME (1955) Microscopic studies of ball propellant, Frankford Arsenal report. Pitman-Dunn Laboratories, Philadelphia, PA, USA

    Google Scholar 

  22. Yazici R, Kalyon DM (1998) Microstructure and mixing distribution analysis in M30 triple-base propellants

    Google Scholar 

  23. Taylor S, Lever JH, Fadden J, Perron N, Packer B (2009) Outdoor weathering and dissolution of TNT and tritonal. Chemosphere 77:1338–1345

    Article  CAS  Google Scholar 

  24. Taylor S, Lever JH, Walsh ME, Fadden J, Perron N, Bigl S, Spanggord R, Curnow M, Packer B (2010) Dissolution rate, weathering mechanics and friability of TNT, Comp B, tritonal, and Octol. ERDC/CRREL

    Google Scholar 

  25. Bedford CD, Carpenter PS, Nadler MP (1996) Solid-state photodecomposition of energetic nitramines (RDX and HMX). Naval Air Warfare Center Weapons Division, China Lake, CA 93555-6001

    Google Scholar 

  26. Yinon J (1999) Forensic and environmental detection of explosives. John Wiley, Chichester, UK

    Google Scholar 

  27. U.S. Environmental Protection Agency (2012) Region 9 human health screening levels

    Google Scholar 

  28. Jenkins TF, Ampleman G, Thiboutot S, Bigl SR, Taylor S, Walsh MR, Faucher D, Martel R, Poulin I, Dontsova KM, Walsh ME, Brochu S, Hewitt AD, Comeau G, Diaz E, Chappell MA, Fadden JL, Marois A, Fifield LNR, Quemerais B, Simunek J, Perron NM, Gagnon A, Gamache T, Pennington JC, Moors V, Lambert DJ, Gilbert MD, Bailey RN, Tanguay V, Ramsey CA, Melanson L, Lapointe MC (2008) Strategic environmental research and development program (SERDP) Characterization and fate of gun and rocket propellant residues on testing and training ranges: final report

    Google Scholar 

  29. Paquet L, Monteil-Rivera F, Hatzinger PB, Fuller ME, Hawari J (2011) Analysis of the key intermediates of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in groundwater: occurrence, stability and preservation. J Environ Monit 13:2304–2311

    Article  CAS  Google Scholar 

  30. Gobas FAPC, Moore MM, Hermens JLM, Arnot JA (2006) Bioaccumulation reality check. SETAC Globe 7(5):40–41

    Google Scholar 

  31. Thorn KA, Kennedy KR (2002) 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose. Environ Sci Technol 36:3787–3796

    Article  CAS  Google Scholar 

  32. Dontsova KM, Hayes C, Pennington JC, Porter B (2009) Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron. J Environ Qual 38:1458–1465

    Article  CAS  Google Scholar 

  33. Tucker WA, Murphy GJ, Arenberg ED (2002) Adsorption of RDX to soil with low organic carbon: laboratory results, field observations, remedial implications. Soil Sediment Contam 11:809–826

    Article  CAS  Google Scholar 

  34. Eriksson J, Skyllberg U (2001) Binding of 2,4,6-trinitrotoluene and its degradation products in a soil organic matter two-phase system. J Environ Qual 30:2053–2061

    Article  CAS  Google Scholar 

  35. Zhang D, Zhu D, Chen W (2009) Sorption of nitroaromatics to soils: comparison of the importance of soil organic matter versus clay. Environ Toxicol Chem 28:1447–1454

    Google Scholar 

  36. Haderlein SB, Weissmahr KW, Schwarzenbach RP (1996) Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Environ Sci Technol 30:612–622

    Article  CAS  Google Scholar 

  37. Pennington JC, Patrick WH (1990) Adsorption and desorption of 2,4,6-trinitrotoluene by soils. J Environ Qual 19:559–567

    Article  CAS  Google Scholar 

  38. Elovitz MS, Weber EJ (1999) Sediment-mediated reduction of 2,4,6-trinitrotoluene and fate of the resulting aromatic (poly)amines. Environ Sci Technol 33:2617–2625

    Article  CAS  Google Scholar 

  39. Haderlein SB, Schwarzenbach RP (1995) Environmental processes influencing the rate of abiotic reduction of nitroaromatic compounds in the subsurface. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Springer Science+Business Media, New York, pp 199–225

    Chapter  Google Scholar 

  40. Rieger P-G, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 1–18

    Google Scholar 

  41. Weissmahr KW, Hildenbrand M, Schwarzenbach RP, Haderlein SB (1999) Laboratory and field scale evaluation of geochemical controls on groundwater transport of nitroaromatic ammunition residues. Environ Sci Technol 33:2593–2600

    Article  CAS  Google Scholar 

  42. Li AZ, Marx KA, Walker J, Kaplan DL (1997) Trinitrotoluene and metabolites binding to humic acid. Environ Sci Technol 31:584–589

    Article  CAS  Google Scholar 

  43. Weissmahr KW, Haderlein SB, Schwarzenbach RP (1998) Complex formation of soil minerals with nitroaromatic explosives and other pi-acceptors. Soil Sci Soc Am J 62:369–378

    Article  CAS  Google Scholar 

  44. Ainsworth CC, Harvey SD, Szecsody JE, Simmons MA, Cullinan VI, Resch CT, Mong GM (1993). Relationship between the leachability characteristics of unique energetic compounds and soil properties. U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, Frederick, MD

    Google Scholar 

  45. Thorn KA, Pennington JC, Kennedy KR, Cox LG, Hayes CA, Porter BE (2008) N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost. Environ Sci Technol 42:2542–2550

    Article  CAS  Google Scholar 

  46. Brannon JM, Pennington JC (2002) Environmental fate and transport process descriptors for explosives. US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  47. Dontsova KM, Yost SL, Simunek J, Pennington JC, Williford CW (2006) Dissolution and transport of TNT, RDX, and composition B in saturated soil columns. J Environ Qual 35:2043–2054

    Article  CAS  Google Scholar 

  48. Szecsody JE, Girvin DC, Devary BJ, Campbell JA (2004) Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments. Chemosphere 56:593–610

    Article  CAS  Google Scholar 

  49. Winkler DA (1985) Conformational analysis of nitroglycerin. Propellants Explos Pyrotech 10:43–46

    Article  CAS  Google Scholar 

  50. Spanggord RJ, Chou TW, Mill T, Haag W, Lau W (1987) Environmental fate of nitroguanidine, diethyleneglycol dinitrate, and hexachloroethane smoke. Final report, phase II. SRI International, Menlo Park, CA, p 67

    Google Scholar 

  51. Pennington JC, Jenkins TF, Ampleman G, Thiboutot S, Brannon JM, Hewitt AD, Lewis J, Brochu S, Diaz E, Walsh MR, Walsh ME, Taylor S, Lynch JC, Clausen J, Ranney TA, Ramsey CA, Hayes CA, Grant CL, Collins CM, Bigl SR, Yost SL, Dontsova KM (2006) Distribution and fate of energetics on DoD test and training ranges: final report. Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  52. Dontsova KM, Pennington JC, Yost S, Hayes C (2007) Transport of nitroglycerin, nitroguanidine and diphenylamine in soils. Characterization and fate of gun and rocket propellant residues on testing and training ranges: interim report 1. Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  53. Pennington JC, Jenkins TF, Ampleman G, Thiboutot S (2004) Distribution and fate of energetics on DoD test and training ranges: interim report 4. U.S. Army Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  54. Alavi G, Chung M, Lichwa J, D’Alessio M, Ray C (2011) The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: a laboratory and modeling study. J Hazard Mater 185:1600–1604

    Article  CAS  Google Scholar 

  55. Dontsova KM, Chappell M, Šimunek J, Pennington JC (2008) Dissolution and transport of nitroglycerin, nitroguanidine and ethyl centralite from M9 and M30 propellants in soils. Characterization and fate of gun and rocket propellant residues on testing and training ranges: final report. ERDC TR-08-1. U.S. Army Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  56. Dontsova KM, Hayes C, Šimunek J, Pennington JC, Williford CW (2009) Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil. Chemosphere 77:597–603

    Article  CAS  Google Scholar 

  57. Gutiérrez JP, Padilla IY, Sánchez LD (2010) Transport of explosive chemicals when subjected to infiltration and evaporation processes in soils. Ingeniería y Competitividad 12:117–131

    Google Scholar 

  58. Townsend DM, Adrian DD, Myers TE (1996) RDX and HMX sorption in thin disk soil columns. Waterways Experiment Station, US Army Corps of Engineers, p 33

    Google Scholar 

  59. Townsend DM, Myers TE, Adrian DD (1995) 2,4,6-Trinitrotoluene (TNT) transformation/sorption in thin-disk soil columns. US Army Corps of Engineers, Waterways Experiment Station, p 58

    Google Scholar 

  60. Yamamoto H, Morley MC, Speitel GE, Clausen J (2004) Fate and transport of high explosives in a sandy soil: adsorption and desorption. Soil Sediment Contam 13:459–477

    CAS  Google Scholar 

  61. Bordeleau G, Martel R, Ampleman G, Thiboutot S, Poulin I (2012) The fate and transport of nitroglycerin in the unsaturated zone at active and legacy anti-tank firing positions. J Contam Hydrol 142–143:11–21

    Article  Google Scholar 

  62. Fuller ME, Schaefer CE, Andaya C, Fallis S (2015) Production of particulate composition B during simulated weathering of larger detonation residues. J Hazard Mater 283:1–6

    Article  CAS  Google Scholar 

  63. Fuller ME, Schaefer CE, Andaya C, Fallis S (2014) Transport and dissolution of microscale composition B detonation residues in porous media. Chemosphere 107:400–406

    Article  CAS  Google Scholar 

  64. Lavoie B (2010) Transport of explosive residue surrogates in saturated porous media. In: Geology. The University of Tennessee, Knoxville

    Google Scholar 

  65. Taylor S, Bigl S, Packer B (2015) Condition of in situ unexploded ordnance. Sci Total Environ 505:762–769

    Article  CAS  Google Scholar 

  66. Walsh MR, Walsh ME, Hewitt AD (2009) Energetic residues from the expedient disposal of artillery propellants. ERDC/CRREL TR-09-8

    Google Scholar 

  67. Walsh MR, Taylor S, Walsh ME, Bigl S, Bjella K, Douglas T, Gelvin A, Lambert D, Perron N, Saari S (2005a) Residues from live fire detonations of 155-mm howitzer rounds. U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH

    Google Scholar 

  68. Walsh MR, Walsh ME, Ramsey CA, Rachow RJ, Zufelt JE, Collins CM, Gelvin AB, Perron NM, Saari SP (2006) Energetic residues from a 60-mm and 81-mm live fire exercise

    Google Scholar 

  69. Walsh MR, Walsh ME, Collins CM, Saari SP, Zufelt JE, Gelvin AB, Hughes JB (2005b) Energetic residues from live-fire detonations of 120-mm Mortar rounds. ERDC/CRREL TR-05-15

    Google Scholar 

  70. Ampleman G, Thiboutot S, Marois A, Gagnon A, Gilbert D, Walsh MR, Walsh ME, Woods P (2009) Evaluation of the propellant, residues emitted during 105-mm leopard tank live firing at CFB Valcartier, Canada. Defence R&D Canada-Valcartier, TR 2009-420

    Google Scholar 

  71. Walsh MR, Walsh ME, Hug JW, Bigl SR, Foley KL, Gelvin AB, Perron NM (2010) Propellant residues deposition from firing of 40-mm grenades. ERDC/CRREL TR-10-10

    Google Scholar 

  72. Walsh MR, Walsh ME, Bigl SR, Perron NM, Lambert DJ, Hewitt AD (2007) Propellant residues deposition from small arms munitions. Cold Regions Research and Engineering Laboratory, U.S. Army Engineer Research and Development Center, Hanover, NH

    Google Scholar 

  73. Hewitt AD, Jenkins TF, Walsh ME, Walsh MR, Taylor S (2005) RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere 61:888–894

    Article  CAS  Google Scholar 

  74. Walsh ME, Collins CM, Hewitt AD, Walsh MR, Jenkins TF, Stark J, Gelvin A, Douglas TS, Perron N, Lambert D, Bailey R, Myers K (2004) Range characterization studies at Donnelly training area, Alaska: 2001 and 2002. ERDC/CRREL TR-04-3

    Google Scholar 

  75. Ro KS, Venugopal A, Adrian DD, Constant D, Qaisi K, Valsaraj KT, Thibodeaux LJ, Roy D (1996) Solubility of 2,4,6-trinitrotoluene (TNT) in water. J Chem Eng Data 41:758–761

    Article  CAS  Google Scholar 

  76. Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer, Berlin, pp 195–234

    Google Scholar 

  77. Banerjee S, Yalkowsky SH, Valvani C (1980) Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation. Environ Sci Technol 14:1227–1229

    Article  CAS  Google Scholar 

  78. Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan V, Beaulieu C, Hawari J (2004) Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX. J Chromatogr A 1025:125–132

    Article  CAS  Google Scholar 

  79. U.S. Army Materiel Command (1971) Properties of explosives of military interest. In: Engineering design handbook. Explosives series, AMC pamphlet 706-177, Washington, DC, 29 Jan 1971

    Google Scholar 

  80. Haag WR, Spanggord R, Mill T, Podoll RT, Chou T-W, Tse DS, Harper JC (1990) Aquatic environmental fate of nitroguanidine. Environ Toxicol Chem 9:1359–1367

    Article  CAS  Google Scholar 

  81. Van der Schalie WH (1985) The toxicity of nitroguanidine and photolyzed nitroguanidine to freshwater aquatic organisms. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Fredrick, MD

    Google Scholar 

  82. Sheremata TW, Halasz A, Paquet L, Thiboutot S, Ampleman G, Hawari J (2001) The fate of the cyclic nitramine explosive RDX in natural soil. Environ Sci Technol 35:1037–1040

    Article  CAS  Google Scholar 

  83. Pennington JC, Jenkins TF, Ampleman G, Thiboutot S, Brannon JM, Lynch J, Ranney TA, Stark JA, Walsh ME, Lewis J, Hayes CA, Mirecki JE, Hewitt AD, Perron N, Lambert D, Clausen J, Delfino JJ (2002) Distribution and fate of energetics on DoD test and training ranges: interim report 2. Army Corps of Engineers, Washington, DC, U.S, p 126

    Google Scholar 

  84. Pennington JC, Thorn KA, Hayes CA, Porter BE, Kennedy KR (2003) Immobilization of 2,4- and 2,6-dinitrotoluenes in Soils and Compost. US Army Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  85. Price CB, Brannon JM, Yost SL, Hayes CA (2000) Adsorption and transformation of explosives in low-carbon aquifer soils. Engineer Research and Development Center Environmental Laboratory, Vicksburg, MS, p 26

    Google Scholar 

  86. Leggett DC (1985) Sorption of military explosive contaminants on bentonite drilling muds. CRREL report 85-18

    Google Scholar 

  87. Pennington JC, Brannon JM, Berry TE Jr., Jenkins TF, Miyares PH, Walsh ME, Hewitt AD, Perron N, Ranney TA, Lynch J, Delfino JJ, Hayes CA (2001) Distribution and fate of energetics on DoD test and training ranges: interim report 1. U.S. Army Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  88. Brannon JM, Deliman PN, Gerald JA, Ruiz CE, Price CB, Hayes C, Yost S, Qasim M (1999) Conceptual model and process descriptor formulations for fate and transport of UXO. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS

    Google Scholar 

Download references

Acknowledgements

We thank the US Strategic Environmental Research and Development Program (SERDP) for supporting the research summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Dontsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dontsova, K., Taylor, S. (2017). High Explosives and Propellants Energetics: Their Dissolution and Fate in Soils. In: Shukla, M., Boddu, V., Steevens, J., Damavarapu, R., Leszczynski, J. (eds) Energetic Materials. Challenges and Advances in Computational Chemistry and Physics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-59208-4_11

Download citation

Publish with us

Policies and ethics