Advertisement

Using Human Neural Stem Cells as a Model to Understand the “Science of Ashwagandha”

  • Manju Tewari
  • Hriday S. Pandey
  • Pankaj SethEmail author
Chapter

Abstract

Ashwagandha (Withania somnifera), a traditional Indian herb, has been widely employed in ayurvedic medicine. Various compounds isolated from leaf and root of this plant are used in treating human illness ranging from weakness, anxiety, rheumatic pain, diabetes, infertility, oxidative stress to cancer. In past two decades, scientific evidence for the neuroprotective effect of Ashwagandha further validates its use for treatment of Alzheimer’s, Parkinson’s, Huntington’s disease and spinal cord injury. This chapter discusses the neuroprotective effects of various components of Ashwagandha in neurological disorders, majority of which have been studied using animal models or cell lines. Extensive explorations into mechanistic aspects of Ashwagandha are mandatory to validate the findings obtained from animal models and to confirm their therapeutic potential in human system. In order to explore the therapeutic potential of the drug for treating brain disorders, it is important to investigate the effects of this herbal drug on primary human brain cells. This chapter emphasizes on the potential of using human neural stem cells (NSCs) as an in vitro model to study the neuroprotective effects of Ashwagandha and to gain novel insights into the underlying mechanism of action under physiological and pathological conditions. Different sources of neural stem cells have also been described in the chapter with a detailed insight on the method of deriving NSCs.

Keywords

Neurological diseases Withania somnifera Neuroprotective effects Human fetal neural stem cells In vitro model 

Notes

Acknowledgements

Financial support from NBRC core funds, to Pankaj Seth laboratory is greatly acknowledged. The authors also wish to acknowledge the support of the facilities provided under the Biotechnology Information System Network (BTISNET) grant, DBT, India and Distributed Information Centre at NBRC, Manesar, India. Senior Research Fellowship to Manju Tewari and Junior Research Fellowship to Hriday Shankar Pandey from Council of Scientific and Industrial Research, New Delhi is acknowledged.

Conflict of Interests

The authors declare that there is no conflict of interest regarding the publication of this book chapter.

References

  1. Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147PubMedCrossRefGoogle Scholar
  2. Akerud P, Canals JM, Snyder EY, Arenas E (2001) Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 21:8108–8118PubMedGoogle Scholar
  3. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167:27–39PubMedCrossRefGoogle Scholar
  4. Alsanie WF, Niclis JC, Petratos S (2013) Human embryonic stem cell-derived oligodendrocytes: protocols and perspectives. Stem Cells Dev 22:2459–2476PubMedPubMedCentralCrossRefGoogle Scholar
  5. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335PubMedCrossRefGoogle Scholar
  6. Alvarez-Buylla A (1992) Neurogenesis and plasticity in the CNS of adult birds. Exp Neurol 115:110–114PubMedCrossRefGoogle Scholar
  7. Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 26:410–418PubMedCrossRefGoogle Scholar
  8. Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17:170–182PubMedCrossRefGoogle Scholar
  9. Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp 45:2393Google Scholar
  10. Badger JL, Cordero-Llana O, Hartfield EM, Wade-Martins R (2014) Parkinson’s disease in a dish – using stem cells as a molecular tool. Neuropharmacology 76 Pt A:88–96Google Scholar
  11. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672PubMedCrossRefGoogle Scholar
  12. Banez-Coronel M, Porta S, Kagerbauer B, Mateu-Huertas E, Pantano L, Ferrer I, Guzman M, Estivill X, Marti E (2012) A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 8:e1002481PubMedPubMedCentralCrossRefGoogle Scholar
  13. Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74CrossRefGoogle Scholar
  14. Benskey MJ, Perez RG, Manfredsson FP (2016) The contribution of alpha synuclein to neuronal survival and function – Implications for Parkinson’s disease. J Neurochem 137:331–359PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bjugstad KB, Redmond DE Jr, Teng YD, Elsworth JD, Roth RH, Blanchard BC, Snyder EY, Sladek JR Jr (2005) Neural stem cells implanted into MPTP-treated monkeys increase the size of endogenous tyrosine hydroxylase-positive cells found in the striatum: a return to control measures. Cell Transplant 14:183–192PubMedCrossRefGoogle Scholar
  16. Branco F, Cardenas DD, Svircev JN (2007) Spinal cord injury: a comprehensive review. Phys Med Rehabil Clin N Am 18:651–679, v.Google Scholar
  17. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397PubMedCrossRefGoogle Scholar
  18. Casarosa S, Bozzi Y, Conti L (2014) Neural stem cells: ready for therapeutic applications? Mol Cell Ther 2:31PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen Y, Lai D (2015) Pluripotent states of human embryonic stem cells. Cell Reprogram 17:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, Lee ST, Kang L, Lee K, Park DK, Kim SU, Roh JK (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145–153PubMedCrossRefGoogle Scholar
  21. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150PubMedCrossRefGoogle Scholar
  22. Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T, Hargus G, Deleidi M, Lawson T, Bogetofte H, Perez-Torres E, Clark L, Moskowitz C, Mazzulli J, Chen L, Volpicelli-Daley L, Romero N, Jiang H, Uitti RJ, Huang Z, Opala G, Scarffe LA, Dawson VL, Klein C, Feng J, Ross OA, Trojanowski JQ, Lee VM, Marder K, Surmeier DJ, Wszolek ZK, Przedborski S, Krainc D, Dawson TM, Isacson O (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4: 141ra90Google Scholar
  23. Csobonyeiova M, Danisovic L, Polak S (2016) Recent advances in iPSC technologies involving cardiovascular and neurodegenerative disease modeling. Gen Physiol Biophys 35:1–12PubMedGoogle Scholar
  24. Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102:14069–14074PubMedPubMedCentralCrossRefGoogle Scholar
  25. De Filippis L, Binda E (2012) Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 1:298–308PubMedPubMedCentralCrossRefGoogle Scholar
  26. Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, Ben-Hur T (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 24:1074–1082PubMedCrossRefGoogle Scholar
  27. Falkenburger BH, Saridaki T, Dinter E (2016) Cellular models for Parkinson’s disease. J Neurochem 139(Suppl 1):121–130PubMedCrossRefGoogle Scholar
  28. Fatima M, Kumari R, Schwamborn JC, Mahadevan A, Shankar SK, Raja R, Seth P (2016) Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration. Cell Death Differ 23:776–786PubMedCrossRefGoogle Scholar
  29. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039PubMedCrossRefGoogle Scholar
  30. Fujiwara Y, Tanaka N, Ishida O, Fujimoto Y, Murakami T, Kajihara H, Yasunaga Y, Ochi M (2004) Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett 366:287–291PubMedCrossRefGoogle Scholar
  31. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  32. Gepstein L (2002) Derivation and potential applications of human embryonic stem cells. Circ Res 91:866–876PubMedCrossRefGoogle Scholar
  33. Ghosh SS, Swerdlow RH, Miller SW, Sheeman B, Parker WD Jr, Davis RE (1999) Use of cytoplasmic hybrid cell lines for elucidating the role of mitochondrial dysfunction in Alzheimer’s disease and Parkinson’s disease. Ann N Y Acad Sci 893:176–191PubMedCrossRefGoogle Scholar
  34. Gupta N, Henry RG, Strober J, Kang SM, Lim DA, Bucci M, Caverzasi E, Gaetano L, Mandelli ML, Ryan T, Perry R, Farrell J, Jeremy RJ, Ulman M, Huhn SL, Barkovich AJ, Rowitch DH (2012) Neural stem cell engraftment and myelination in the human brain. Sci Transl Med 4: 155ra137Google Scholar
  35. Harris L, Zalucki O, Piper M, Heng JI (2016) Insights into the Biology and Therapeutic Applications of Neural Stem Cells. Stem Cells Int 2016:9745315PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23:699–708PubMedCrossRefGoogle Scholar
  37. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ (2016) Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 174:93–112PubMedCrossRefGoogle Scholar
  38. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107:4335–4340PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ishii T, Eto K (2014) Fetal stem cell transplantation: Past, present, and future. World J Stem Cells 6:404–420PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519PubMedCrossRefGoogle Scholar
  41. Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34:2258–2263PubMedCrossRefGoogle Scholar
  42. Ji L, Zhao X, Lu W, Zhang Q, Hua Z (2016) Intracellular Abeta and its Pathological Role in Alzheimer’s Disease: Lessons from Cellular to Animal Models. Curr Alzheimer Res 13:621–630PubMedCrossRefGoogle Scholar
  43. Jin X (2016) The role of neurogenesis during development and in the adult brain. Eur J Neurosci 44:2291–2299PubMedCrossRefGoogle Scholar
  44. Kaul M (2009) HIV-1 associated dementia: update on pathological mechanisms and therapeutic approaches. Curr Opin Neurol 22:315–320PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101:11839–11844PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56PubMedCrossRefGoogle Scholar
  47. Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One 6:e27265PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate Abeta(25-35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426PubMedCrossRefGoogle Scholar
  49. Kuboyama T, Tohda C, Komatsu K (2014) Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull 37:892–897PubMedCrossRefGoogle Scholar
  50. Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry 32:1093–1105PubMedCrossRefGoogle Scholar
  51. Kumar P, Kumar A (2009) Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J Med Food 12:591–600PubMedCrossRefGoogle Scholar
  52. Kurapati KR, Atluri VS, Samikkannu T, Nair MP (2013) Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8:e77624PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:1204–1212PubMedCrossRefGoogle Scholar
  54. Li X, Xu J, Bai Y, Wang X, Dai X, Liu Y, Zhang J, Zou J, Shen L, Li L (2005) Isolation and characterization of neural stem cells from human fetal striatum. Biochem Biophys Res Commun 326:425–434PubMedCrossRefGoogle Scholar
  55. Li Y, Chi XC, Li XX, Xu JC (2008) Multipotency of human neural stem cells from fetal striatum. Neuroreport 19:1679–1683PubMedCrossRefGoogle Scholar
  56. Liker MA, Petzinger GM, Nixon K, McNeill T, Jakowec MW (2003) Human neural stem cell transplantation in the MPTP-lesioned mouse. Brain Res 971:168–177PubMedCrossRefGoogle Scholar
  57. Lim DA, Alvarez-Buylla A (2016) The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 8:a018820PubMedCrossRefGoogle Scholar
  58. Loeffler DA, Camp DM, Bennett DA (2008) Plaque complement activation and cognitive loss in Alzheimer’s disease. J Neuroinflammation 5:9PubMedPubMedCentralCrossRefGoogle Scholar
  59. Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, Leist M (2005) Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci 25:6329–6342PubMedCrossRefGoogle Scholar
  61. Louis SA, Mak CK, Reynolds BA (2013) Methods to culture, differentiate, and characterize neural stem cells from the adult and embryonic mouse central nervous system. Methods Mol Biol 946:479–506PubMedCrossRefGoogle Scholar
  62. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105:2883–2888PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129PubMedCrossRefGoogle Scholar
  64. Malik S, Saha R, Seth P (2014) Involvement of extracellular signal-regulated kinase (ERK1/2)-p53-p21 axis in mediating neural stem/progenitor cell cycle arrest in co-morbid HIV-drug abuse exposure. J Neuroimmune Pharmacol 9:340–353PubMedCrossRefGoogle Scholar
  65. Marras C, Rochon P, Lang AE (2002) Predicting motor decline and disability in Parkinson disease: a systematic review. Arch Neurol 59:1724–1728PubMedCrossRefGoogle Scholar
  66. Marshall VS, Waknitz MA, Thomson JA (2001) Isolation and maintenance of primate embryonic stem cells. Methods Mol Biol 158:11–18PubMedGoogle Scholar
  67. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711PubMedCrossRefGoogle Scholar
  68. Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847PubMedCrossRefGoogle Scholar
  69. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219PubMedCrossRefGoogle Scholar
  70. McMahon SS, Albermann S, Rooney GE, Shaw G, Garcia Y, Sweeney E, Hynes J, Dockery P, O’Brien T, Windebank AJ, Allsopp TE, Barry FP (2010) Engraftment, migration and differentiation of neural stem cells in the rat spinal cord following contusion injury. Cytotherapy 12:313–325PubMedCrossRefGoogle Scholar
  71. Messam CA, Hou J, Gronostajski RM, Major EO (2003) Lineage pathway of human brain progenitor cells identified by JC virus susceptibility. Ann Neurol 53:636–646PubMedCrossRefGoogle Scholar
  72. Mishra M, Taneja M, Malik S, Khalique H, Seth P (2010) Human immunodeficiency virus type 1 Tat modulates proliferation and differentiation of human neural precursor cells: implication in NeuroAIDS. J Neurovirol 16:355–367PubMedCrossRefGoogle Scholar
  73. Molinuevo JL, Casado-Naranjo I (2014) Clinical profile of Alzheimer’s disease: is the age of the patient a decisive factor? Results of the INFLUENCE study. J Alzheimers Dis 39:227–232PubMedGoogle Scholar
  74. Monaco MC, Maric D, Bandeian A, Leibovitch E, Yang W, Major EO (2012) Progenitor-derived oligodendrocyte culture system from human fetal brain. J Vis Exp 70:4274Google Scholar
  75. Morrison B 3rd, Saatman KE, Meaney DF, McIntosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15:911–928PubMedCrossRefGoogle Scholar
  76. Nakayama N, Tohda C (2007) Withanoside IV improves hindlimb function by facilitating axonal growth and increase in peripheral nervous system myelin level after spinal cord injury. Neurosci Res 58:176–182PubMedCrossRefGoogle Scholar
  77. Nam H, Lee KH, Nam DH, Joo KM (2015) Adult human neural stem cell therapeutics: Current developmental status and prospect. World J Stem Cells 7:126–136PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nath A (2015) Neurologic Complications of Human Immunodeficiency Virus Infection. Continuum (Minneap Minn) 21:1557–1576Google Scholar
  79. Nikol’skii NN, Gibai IA, Somova NV (2007) Human embryonic stem cells. Problems and perspectives. Tsitologiia 49:529–537PubMedGoogle Scholar
  80. Nishino H, Hida H, Takei N, Kumazaki M, Nakajima K, Baba H (2000) Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol 164:209–214PubMedCrossRefGoogle Scholar
  81. Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY (2002) Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 20:1103–1110PubMedCrossRefGoogle Scholar
  82. Pant M, Garg P, Seth P (2012a) Central Nervous System Infection by HIV-1: Special Emphasis to NeuroAIDS in India. Proc Natl Acad Sci Sect B Biol Sci 82:81–94CrossRefGoogle Scholar
  83. Pant M, Garg P, Seth P (2012b) Central Nervous System Infection by HIV-1: Special Emphasis to NeuroAIDS in India. Proc Natl Acad Sci Sect B Biol Sci 82:81–94CrossRefGoogle Scholar
  84. Park CH, Minn YK, Lee JY, Choi DH, Chang MY, Shim JW, Ko JY, Koh HC, Kang MJ, Kang JS, Rhie DJ, Lee YS, Son H, Moon SY, Kim KS, Lee SH (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92:1265–1276PubMedCrossRefGoogle Scholar
  85. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694PubMedCrossRefGoogle Scholar
  86. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271PubMedCrossRefGoogle Scholar
  87. Pollard SM, Benchoua A, Lowell S (2006) Neural stem cells, neurons, and glia. Methods Enzymol 418:151–169PubMedCrossRefGoogle Scholar
  88. Prakash J, Yadav SK, Chouhan S, Singh SP (2013) Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem Res 38:972–980PubMedCrossRefGoogle Scholar
  89. Rafuse VF, Soundararajan P, Leopold C, Robertson HA (2005) Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience 131:899–916PubMedCrossRefGoogle Scholar
  90. Rajasankar S, Manivasagam T, Surendran S (2009a) Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett 454:11–15Google Scholar
  91. RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, Surendran S (2009b) Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373PubMedCrossRefGoogle Scholar
  92. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53PubMedPubMedCentralCrossRefGoogle Scholar
  93. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710PubMedCrossRefGoogle Scholar
  94. Richardson RM, Broaddus WC, Holloway KL, Fillmore HL (2005) Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res 1032:11–22PubMedCrossRefGoogle Scholar
  95. Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, Lenzlinger PM, Lifshitz J, Boockvar J, Neugebauer E, Snyder EY, McIntosh TK (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1052. discussion 1052-1044PubMedGoogle Scholar
  96. Rohwedel J, Sehlmeyer U, Shan J, Meister A, Wobus AM (1996) Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol Int 20:579–587PubMedCrossRefGoogle Scholar
  97. Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98PubMedCrossRefGoogle Scholar
  99. Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU (2004) Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis 16:68–77PubMedCrossRefGoogle Scholar
  100. Saito Y, Shioya A, Sano T, Sumikura H, Murata M, Murayama S (2016) Lewy body pathology involves the olfactory cells in Parkinson’s disease and related disorders. Mov Disord 31:135–138PubMedCrossRefGoogle Scholar
  101. Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, Di Guglielmo C, Ezquerra M, Patel B, Giralt A, Canals JM, Memo M, Alberch J, Lopez-Barneo J, Vila M, Cuervo AM, Tolosa E, Consiglio A, Raya A (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 12:473–481PubMedCrossRefGoogle Scholar
  103. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A 109:3510–3515PubMedPubMedCentralCrossRefGoogle Scholar
  104. Seth P, Major EO (2005) Human brain derived cell culture models of HIV-1 infection. Neurotox Res 8:83–89PubMedCrossRefGoogle Scholar
  105. Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, Laplaca MC, Stein DG (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026:11–22PubMedCrossRefGoogle Scholar
  106. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57PubMedCrossRefGoogle Scholar
  107. Singh N, Bhalla M, de Jager P, Gilca M (2011) An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 8:208–213PubMedPubMedCentralGoogle Scholar
  108. Sohur US, Emsley JG, Mitchell BD, Macklis JD (2006) Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci 361:1477–1497PubMedCrossRefGoogle Scholar
  109. Sun Y, Savanenin A, Reddy PH, Liu YF (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276:24713–24718PubMedCrossRefGoogle Scholar
  110. Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148:135–146PubMedCrossRefGoogle Scholar
  111. Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369:20130288PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tang Z, Yu Y, Guo H, Zhou J (2002) Induction of tyrosine hydroxylase expression in rat fetal striatal precursor cells following transplantation. Neurosci Lett 324:13–16PubMedCrossRefGoogle Scholar
  113. Tang JY, Wong GH, Ng CK, Kwok DT, Lee MN, Dai DL, Lum TY (2016) Neuropsychological Profile and Dementia Symptom Recognition in Help-Seekers in a Community Early-Detection Program in Hong Kong. J Am Geriatr Soc 64:584–589PubMedCrossRefGoogle Scholar
  114. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99:3024–3029PubMedPubMedCentralCrossRefGoogle Scholar
  115. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580PubMedCrossRefGoogle Scholar
  116. Teshigawara K, Kuboyama T, Shigyo M, Nagata A, Sugimoto K, Matsuya Y, Tohda C (2013) A novel compound, denosomin, ameliorates spinal cord injury via axonal growth associated with astrocyte-secreted vimentin. Br J Pharmacol 168:903–919PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tewari M, Monika VRK, Menon M, Seth P (2015) Astrocytes mediate HIV-1 Tat-induced neuronal damage via ligand-gated ion channel P2X7R. J Neurochem 132:464–476PubMedCrossRefGoogle Scholar
  118. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  119. Tohda C (2008) Overcoming several neurodegenerative diseases by traditional medicines: the development of therapeutic medicines and unraveling pathophysiological mechanisms. Yakugaku Zasshi 128:1159–1167PubMedCrossRefGoogle Scholar
  120. Tohda C, Kuboyama T, Komatsu K (2000) Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport 11:1981–1985PubMedCrossRefGoogle Scholar
  121. Trounson A (2005) Human embryonic stem cell derivation and directed differentiation. Ernst Schering Res Found Workshop: 27–44Google Scholar
  122. Trounson A (2006) The production and directed differentiation of human embryonic stem cells. Endocr Rev 27:208–219PubMedCrossRefGoogle Scholar
  123. Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, Banik NL (2013) Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 38:895–905PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ven Murthy MR, Ranjekar PK, Ramassamy C, Deshpande M (2010) Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha. Cent Nerv Syst Agents Med Chem 10:238–246PubMedCrossRefGoogle Scholar
  125. Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966PubMedCrossRefGoogle Scholar
  126. Wang GH, Mitsui K, Kotliarova S, Yamashita A, Nagao Y, Tokuhiro S, Iwatsubo T, Kanazawa I, Nukina N (1999) Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. Neuroreport 10:2435–2438PubMedCrossRefGoogle Scholar
  127. Wang J, Gu Q, Hao J, Bai D, Liu L, Zhao X, Liu Z, Wang L, Zhou Q (2013) Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells. Genomics Proteomics Bioinformatics 11:304–311PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wang T, Choi E, Monaco MC, Major EO, Medynets M, Nath A (2015) Direct induction of human neural stem cells from peripheral blood hematopoietic progenitor cells. J Vis Exp 95:52298Google Scholar
  129. Whitman MC, Greer CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89:162–175PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wobus AM (2001) Potential of embryonic stem cells. Mol Aspects Med 22:149–164PubMedCrossRefGoogle Scholar
  131. Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678PubMedCrossRefGoogle Scholar
  132. Wyttenbach A, Carmichael J, Swartz J, Furlong RA, Narain Y, Rankin J, Rubinsztein DC (2000) Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci U S A 97:2898–2903PubMedPubMedCentralCrossRefGoogle Scholar
  133. Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 123:1086–1092Google Scholar
  134. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684PubMedCrossRefGoogle Scholar
  135. Yu DX, Marchetto MC, Gage FH (2014) How to make a hippocampal dentate gyrus granule neuron. Development 141:2366–2375PubMedCrossRefGoogle Scholar
  136. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133PubMedCrossRefGoogle Scholar
  137. Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull (Tokyo) 50:760–765CrossRefGoogle Scholar
  138. Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, Bao X, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7:2080–2089PubMedCrossRefGoogle Scholar
  139. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cellular and Molecular NeuroscienceNational Brain Research Centre (NBRC)ManesarIndia

Personalised recommendations